Magnetic behavior of manganese bromide hydrates including deuteration effects

The magnetic properties of previously unexamined MnBr2·2H2O, MnBr2·H2O, MnBr2·2D2O and MnBr2·D2O are studied. Curie–Weiss fits to high temperature data yield θ of −13.1, −3.9, −8.2 and −5.0K, respectively, in χM=C/(T−θ). The net antiferromagnetic exchange yields susceptibility maxima at 6.34, 3.20,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2016-07, Vol.410, p.63-71
Hauptverfasser: DeFotis, G.C., Van Dongen, M.J., Hampton, A.S., Komatsu, C.H., Pothen, J.M., Trowell, K.T., Havas, K.C., Chan, D.G., Reed, Z.D., Hays, K., Wagner, M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue
container_start_page 63
container_title Journal of magnetism and magnetic materials
container_volume 410
creator DeFotis, G.C.
Van Dongen, M.J.
Hampton, A.S.
Komatsu, C.H.
Pothen, J.M.
Trowell, K.T.
Havas, K.C.
Chan, D.G.
Reed, Z.D.
Hays, K.
Wagner, M.J.
description The magnetic properties of previously unexamined MnBr2·2H2O, MnBr2·H2O, MnBr2·2D2O and MnBr2·D2O are studied. Curie–Weiss fits to high temperature data yield θ of −13.1, −3.9, −8.2 and −5.0K, respectively, in χM=C/(T−θ). The net antiferromagnetic exchange yields susceptibility maxima at 6.34, 3.20, 2.10, and 3.40K, with χmax of 0.197, 0.357, 0.465 and 0.348emu/mol, respectively. Noteworthy is the contrast between dideuterate and dihydrate, the largest deuteration effect observed for hydrated transition metal halides. Antiferromagnetic ordering is estimated to occur at 5.91, 2.65, 2.00 and 2.50K, respectively. The ratio Tc/Tmax is 0.93, 0.83, 0.95 and 0.74 in the same order, implying low dimensional magnetism for monohydrate and monodeuterate. Heisenberg model fits to susceptibilities yield primary and secondary exchange interactions. Magnetization data at moderate fields and different temperatures are presented for each substance, and high field data to 70kG at 2.00K. Spin-flop transitions are estimated to occur at 45, 33 and 30kG, respectively, for dihydrate, monohydrate and monodeuterate, but are not observable for MnBr2·2D2O. The results are analyzed from various perspectives. A different monoclinic unit cell is determined for MnBr2·2D2O than for MnBr2·2H2O, with 1.3% larger volume, providing some rationale for the difference in magnetic properties. •The magnetic properties of Mn(II) bromide dihydrate and monohydrate are studied.•The effects of replacing H2O by D2O are examined for both hydration states.•For monohydrate the change in magnetic behavior on deuteration is small.•For dihydrate the change in magnetic behavior on deuteration is large.•The unit cell of MnBr2·2D2O is different from and slightly larger than for MnBr2·2H2O.
doi_str_mv 10.1016/j.jmmm.2016.02.092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825455321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885316301901</els_id><sourcerecordid>1825455321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-8fc78fc4cf9e6a86745c63776e4085b53f7cad2ae99bab723f9d7eafec87a0d43</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhnMAiTF4AU45cmlJk7ZJJS5oAoa0iQucozRxtlRtM5J20t6eTOPMwbJl-bf9fwg9FCQvSFE_dXk3DENOU50TmpOGXqEFYaTMhKjYDbqNsSOEFKWoF2i7VbsRJqdxC3t1dD5gb_Ggxp0aIQJugx-cAbw_maAmiNiNup-NG3fYwDxBajo_YrAW9BTv0LVVfYT7v7xE32-vX6t1tvl8_1i9bDLNOJkyYTVPUWrbQK1EzctK14zzGkoiqrZilmtlqIKmaVXLKbON4aDSCcEVMSVbosfL3kPwPzPESQ4uauj79LSfoywErcqqYrRIo_QyqoOPMYCVh-AGFU6yIPLMS3byzEueeUlCZeKVRM8XESQTRwdBRu1g1GBcSD6l8e4_-S9Ou3gF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825455321</pqid></control><display><type>article</type><title>Magnetic behavior of manganese bromide hydrates including deuteration effects</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>DeFotis, G.C. ; Van Dongen, M.J. ; Hampton, A.S. ; Komatsu, C.H. ; Pothen, J.M. ; Trowell, K.T. ; Havas, K.C. ; Chan, D.G. ; Reed, Z.D. ; Hays, K. ; Wagner, M.J.</creator><creatorcontrib>DeFotis, G.C. ; Van Dongen, M.J. ; Hampton, A.S. ; Komatsu, C.H. ; Pothen, J.M. ; Trowell, K.T. ; Havas, K.C. ; Chan, D.G. ; Reed, Z.D. ; Hays, K. ; Wagner, M.J.</creatorcontrib><description>The magnetic properties of previously unexamined MnBr2·2H2O, MnBr2·H2O, MnBr2·2D2O and MnBr2·D2O are studied. Curie–Weiss fits to high temperature data yield θ of −13.1, −3.9, −8.2 and −5.0K, respectively, in χM=C/(T−θ). The net antiferromagnetic exchange yields susceptibility maxima at 6.34, 3.20, 2.10, and 3.40K, with χmax of 0.197, 0.357, 0.465 and 0.348emu/mol, respectively. Noteworthy is the contrast between dideuterate and dihydrate, the largest deuteration effect observed for hydrated transition metal halides. Antiferromagnetic ordering is estimated to occur at 5.91, 2.65, 2.00 and 2.50K, respectively. The ratio Tc/Tmax is 0.93, 0.83, 0.95 and 0.74 in the same order, implying low dimensional magnetism for monohydrate and monodeuterate. Heisenberg model fits to susceptibilities yield primary and secondary exchange interactions. Magnetization data at moderate fields and different temperatures are presented for each substance, and high field data to 70kG at 2.00K. Spin-flop transitions are estimated to occur at 45, 33 and 30kG, respectively, for dihydrate, monohydrate and monodeuterate, but are not observable for MnBr2·2D2O. The results are analyzed from various perspectives. A different monoclinic unit cell is determined for MnBr2·2D2O than for MnBr2·2H2O, with 1.3% larger volume, providing some rationale for the difference in magnetic properties. •The magnetic properties of Mn(II) bromide dihydrate and monohydrate are studied.•The effects of replacing H2O by D2O are examined for both hydration states.•For monohydrate the change in magnetic behavior on deuteration is small.•For dihydrate the change in magnetic behavior on deuteration is large.•The unit cell of MnBr2·2D2O is different from and slightly larger than for MnBr2·2H2O.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2016.02.092</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Antiferromagnet ; Antiferromagnetism ; Deuteration ; Exchange ; Exchange interactions ; Heisenberg model ; Hydrates ; Magnetic permeability ; Magnetic properties ; Magnetic susceptibility ; Magnetism ; Magnetization ; Powder X-ray diffraction ; Transition metals</subject><ispartof>Journal of magnetism and magnetic materials, 2016-07, Vol.410, p.63-71</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-8fc78fc4cf9e6a86745c63776e4085b53f7cad2ae99bab723f9d7eafec87a0d43</citedby><cites>FETCH-LOGICAL-c370t-8fc78fc4cf9e6a86745c63776e4085b53f7cad2ae99bab723f9d7eafec87a0d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2016.02.092$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>DeFotis, G.C.</creatorcontrib><creatorcontrib>Van Dongen, M.J.</creatorcontrib><creatorcontrib>Hampton, A.S.</creatorcontrib><creatorcontrib>Komatsu, C.H.</creatorcontrib><creatorcontrib>Pothen, J.M.</creatorcontrib><creatorcontrib>Trowell, K.T.</creatorcontrib><creatorcontrib>Havas, K.C.</creatorcontrib><creatorcontrib>Chan, D.G.</creatorcontrib><creatorcontrib>Reed, Z.D.</creatorcontrib><creatorcontrib>Hays, K.</creatorcontrib><creatorcontrib>Wagner, M.J.</creatorcontrib><title>Magnetic behavior of manganese bromide hydrates including deuteration effects</title><title>Journal of magnetism and magnetic materials</title><description>The magnetic properties of previously unexamined MnBr2·2H2O, MnBr2·H2O, MnBr2·2D2O and MnBr2·D2O are studied. Curie–Weiss fits to high temperature data yield θ of −13.1, −3.9, −8.2 and −5.0K, respectively, in χM=C/(T−θ). The net antiferromagnetic exchange yields susceptibility maxima at 6.34, 3.20, 2.10, and 3.40K, with χmax of 0.197, 0.357, 0.465 and 0.348emu/mol, respectively. Noteworthy is the contrast between dideuterate and dihydrate, the largest deuteration effect observed for hydrated transition metal halides. Antiferromagnetic ordering is estimated to occur at 5.91, 2.65, 2.00 and 2.50K, respectively. The ratio Tc/Tmax is 0.93, 0.83, 0.95 and 0.74 in the same order, implying low dimensional magnetism for monohydrate and monodeuterate. Heisenberg model fits to susceptibilities yield primary and secondary exchange interactions. Magnetization data at moderate fields and different temperatures are presented for each substance, and high field data to 70kG at 2.00K. Spin-flop transitions are estimated to occur at 45, 33 and 30kG, respectively, for dihydrate, monohydrate and monodeuterate, but are not observable for MnBr2·2D2O. The results are analyzed from various perspectives. A different monoclinic unit cell is determined for MnBr2·2D2O than for MnBr2·2H2O, with 1.3% larger volume, providing some rationale for the difference in magnetic properties. •The magnetic properties of Mn(II) bromide dihydrate and monohydrate are studied.•The effects of replacing H2O by D2O are examined for both hydration states.•For monohydrate the change in magnetic behavior on deuteration is small.•For dihydrate the change in magnetic behavior on deuteration is large.•The unit cell of MnBr2·2D2O is different from and slightly larger than for MnBr2·2H2O.</description><subject>Antiferromagnet</subject><subject>Antiferromagnetism</subject><subject>Deuteration</subject><subject>Exchange</subject><subject>Exchange interactions</subject><subject>Heisenberg model</subject><subject>Hydrates</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Magnetic susceptibility</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Powder X-ray diffraction</subject><subject>Transition metals</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhnMAiTF4AU45cmlJk7ZJJS5oAoa0iQucozRxtlRtM5J20t6eTOPMwbJl-bf9fwg9FCQvSFE_dXk3DENOU50TmpOGXqEFYaTMhKjYDbqNsSOEFKWoF2i7VbsRJqdxC3t1dD5gb_Ggxp0aIQJugx-cAbw_maAmiNiNup-NG3fYwDxBajo_YrAW9BTv0LVVfYT7v7xE32-vX6t1tvl8_1i9bDLNOJkyYTVPUWrbQK1EzctK14zzGkoiqrZilmtlqIKmaVXLKbON4aDSCcEVMSVbosfL3kPwPzPESQ4uauj79LSfoywErcqqYrRIo_QyqoOPMYCVh-AGFU6yIPLMS3byzEueeUlCZeKVRM8XESQTRwdBRu1g1GBcSD6l8e4_-S9Ou3gF</recordid><startdate>20160715</startdate><enddate>20160715</enddate><creator>DeFotis, G.C.</creator><creator>Van Dongen, M.J.</creator><creator>Hampton, A.S.</creator><creator>Komatsu, C.H.</creator><creator>Pothen, J.M.</creator><creator>Trowell, K.T.</creator><creator>Havas, K.C.</creator><creator>Chan, D.G.</creator><creator>Reed, Z.D.</creator><creator>Hays, K.</creator><creator>Wagner, M.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160715</creationdate><title>Magnetic behavior of manganese bromide hydrates including deuteration effects</title><author>DeFotis, G.C. ; Van Dongen, M.J. ; Hampton, A.S. ; Komatsu, C.H. ; Pothen, J.M. ; Trowell, K.T. ; Havas, K.C. ; Chan, D.G. ; Reed, Z.D. ; Hays, K. ; Wagner, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-8fc78fc4cf9e6a86745c63776e4085b53f7cad2ae99bab723f9d7eafec87a0d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antiferromagnet</topic><topic>Antiferromagnetism</topic><topic>Deuteration</topic><topic>Exchange</topic><topic>Exchange interactions</topic><topic>Heisenberg model</topic><topic>Hydrates</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Magnetic susceptibility</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Powder X-ray diffraction</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeFotis, G.C.</creatorcontrib><creatorcontrib>Van Dongen, M.J.</creatorcontrib><creatorcontrib>Hampton, A.S.</creatorcontrib><creatorcontrib>Komatsu, C.H.</creatorcontrib><creatorcontrib>Pothen, J.M.</creatorcontrib><creatorcontrib>Trowell, K.T.</creatorcontrib><creatorcontrib>Havas, K.C.</creatorcontrib><creatorcontrib>Chan, D.G.</creatorcontrib><creatorcontrib>Reed, Z.D.</creatorcontrib><creatorcontrib>Hays, K.</creatorcontrib><creatorcontrib>Wagner, M.J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeFotis, G.C.</au><au>Van Dongen, M.J.</au><au>Hampton, A.S.</au><au>Komatsu, C.H.</au><au>Pothen, J.M.</au><au>Trowell, K.T.</au><au>Havas, K.C.</au><au>Chan, D.G.</au><au>Reed, Z.D.</au><au>Hays, K.</au><au>Wagner, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic behavior of manganese bromide hydrates including deuteration effects</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2016-07-15</date><risdate>2016</risdate><volume>410</volume><spage>63</spage><epage>71</epage><pages>63-71</pages><issn>0304-8853</issn><abstract>The magnetic properties of previously unexamined MnBr2·2H2O, MnBr2·H2O, MnBr2·2D2O and MnBr2·D2O are studied. Curie–Weiss fits to high temperature data yield θ of −13.1, −3.9, −8.2 and −5.0K, respectively, in χM=C/(T−θ). The net antiferromagnetic exchange yields susceptibility maxima at 6.34, 3.20, 2.10, and 3.40K, with χmax of 0.197, 0.357, 0.465 and 0.348emu/mol, respectively. Noteworthy is the contrast between dideuterate and dihydrate, the largest deuteration effect observed for hydrated transition metal halides. Antiferromagnetic ordering is estimated to occur at 5.91, 2.65, 2.00 and 2.50K, respectively. The ratio Tc/Tmax is 0.93, 0.83, 0.95 and 0.74 in the same order, implying low dimensional magnetism for monohydrate and monodeuterate. Heisenberg model fits to susceptibilities yield primary and secondary exchange interactions. Magnetization data at moderate fields and different temperatures are presented for each substance, and high field data to 70kG at 2.00K. Spin-flop transitions are estimated to occur at 45, 33 and 30kG, respectively, for dihydrate, monohydrate and monodeuterate, but are not observable for MnBr2·2D2O. The results are analyzed from various perspectives. A different monoclinic unit cell is determined for MnBr2·2D2O than for MnBr2·2H2O, with 1.3% larger volume, providing some rationale for the difference in magnetic properties. •The magnetic properties of Mn(II) bromide dihydrate and monohydrate are studied.•The effects of replacing H2O by D2O are examined for both hydration states.•For monohydrate the change in magnetic behavior on deuteration is small.•For dihydrate the change in magnetic behavior on deuteration is large.•The unit cell of MnBr2·2D2O is different from and slightly larger than for MnBr2·2H2O.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2016.02.092</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2016-07, Vol.410, p.63-71
issn 0304-8853
language eng
recordid cdi_proquest_miscellaneous_1825455321
source ScienceDirect Journals (5 years ago - present)
subjects Antiferromagnet
Antiferromagnetism
Deuteration
Exchange
Exchange interactions
Heisenberg model
Hydrates
Magnetic permeability
Magnetic properties
Magnetic susceptibility
Magnetism
Magnetization
Powder X-ray diffraction
Transition metals
title Magnetic behavior of manganese bromide hydrates including deuteration effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20behavior%20of%20manganese%20bromide%20hydrates%20including%20deuteration%20effects&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=DeFotis,%20G.C.&rft.date=2016-07-15&rft.volume=410&rft.spage=63&rft.epage=71&rft.pages=63-71&rft.issn=0304-8853&rft_id=info:doi/10.1016/j.jmmm.2016.02.092&rft_dat=%3Cproquest_cross%3E1825455321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825455321&rft_id=info:pmid/&rft_els_id=S0304885316301901&rfr_iscdi=true