The role of the Pauli–Lubański vector for the Dirac, Weyl, Proca, Maxwell and Fierz–Pauli equations

We analyze basic relativistic wave equations for the classical fields, such as Dirac's equation, Weyl's two-component equation for massless neutrinos and the Proca, Maxwell and Fierz-Pauli equations, from the viewpoint of the Pauli-Lubanski vector and the Casimir operators of the Poincare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2016-03, Vol.91 (3), p.35301-35315
Hauptverfasser: Kryuchkov, Sergey I, Lanfear, Nathan A, Suslov, Sergei K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze basic relativistic wave equations for the classical fields, such as Dirac's equation, Weyl's two-component equation for massless neutrinos and the Proca, Maxwell and Fierz-Pauli equations, from the viewpoint of the Pauli-Lubanski vector and the Casimir operators of the Poincare group. In general, in this group-theoretical approach, the above wave equations arise in certain overdetermined forms, which can be reduced to the conventional ones by a Gaussian elimination. A connection between the spin of a particle/field and consistency of the corresponding overdetermined system is emphasized in the massless case.
ISSN:0031-8949
1402-4896
DOI:10.1088/0031-8949/91/3/035301