Dispersive photonic crystals from the plane wave method

Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2016-03, Vol.484, p.53-58
Hauptverfasser: Guevara-Cabrera, E., Palomino-Ovando, M.A., Flores-Desirena, B., Gaspar-Armenta, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue
container_start_page 53
container_title Physica. B, Condensed matter
container_volume 484
creator Guevara-Cabrera, E.
Palomino-Ovando, M.A.
Flores-Desirena, B.
Gaspar-Armenta, J.A.
description Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.
doi_str_mv 10.1016/j.physb.2015.12.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825453704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452615303628</els_id><sourcerecordid>1825453704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f2c7cb8e55c6b0573c4e5c8f4640118b63a63a6278b6c95849577e0227149ec93</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEuPjF3DpkUtLnI-mPXBA41OaxAXOUeu5aqZ1KUk3tH9PxjhjWbIlP69lv4zdAC-AQ3m3KsZ-H9tCcNAFiIJLfsJmUBmZC5D6lM14LSBXWpTn7CLGFU8BBmbMPLo4UohuR9nY-8lvHGYY9nFq1jHrgh-yqU-jdbOh7LtJ1EBT75dX7KxLBF3_1Uv2-fz0MX_NF-8vb_OHRY6Kl1PeCTTYVqQ1li3XRqIijVWnSsUBqraUzSGFSS3WulK1Noa4EAZUTVjLS3Z73DsG_7WlONnBRaT14R6_jRYqoZWWhquEyiOKwccYqLNjcEMT9ha4PdhkV_bXJnuwyYKwyaakuj-qKH2xcxRsREcbpKULhJNdevev_gdvVXCj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825453704</pqid></control><display><type>article</type><title>Dispersive photonic crystals from the plane wave method</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Guevara-Cabrera, E. ; Palomino-Ovando, M.A. ; Flores-Desirena, B. ; Gaspar-Armenta, J.A.</creator><creatorcontrib>Guevara-Cabrera, E. ; Palomino-Ovando, M.A. ; Flores-Desirena, B. ; Gaspar-Armenta, J.A.</creatorcontrib><description>Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2015.12.030</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Absorption ; Arrays ; Dielectrics ; Dispersive photonic crystals ; Magnesium oxide ; Mathematical analysis ; Mathematical models ; Photonic crystals ; Polaritonic materials ; Polaritonic photonic crystals ; Pulse duration modulation</subject><ispartof>Physica. B, Condensed matter, 2016-03, Vol.484, p.53-58</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f2c7cb8e55c6b0573c4e5c8f4640118b63a63a6278b6c95849577e0227149ec93</citedby><cites>FETCH-LOGICAL-c406t-f2c7cb8e55c6b0573c4e5c8f4640118b63a63a6278b6c95849577e0227149ec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2015.12.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Guevara-Cabrera, E.</creatorcontrib><creatorcontrib>Palomino-Ovando, M.A.</creatorcontrib><creatorcontrib>Flores-Desirena, B.</creatorcontrib><creatorcontrib>Gaspar-Armenta, J.A.</creatorcontrib><title>Dispersive photonic crystals from the plane wave method</title><title>Physica. B, Condensed matter</title><description>Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.</description><subject>Absorption</subject><subject>Arrays</subject><subject>Dielectrics</subject><subject>Dispersive photonic crystals</subject><subject>Magnesium oxide</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Photonic crystals</subject><subject>Polaritonic materials</subject><subject>Polaritonic photonic crystals</subject><subject>Pulse duration modulation</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEuPjF3DpkUtLnI-mPXBA41OaxAXOUeu5aqZ1KUk3tH9PxjhjWbIlP69lv4zdAC-AQ3m3KsZ-H9tCcNAFiIJLfsJmUBmZC5D6lM14LSBXWpTn7CLGFU8BBmbMPLo4UohuR9nY-8lvHGYY9nFq1jHrgh-yqU-jdbOh7LtJ1EBT75dX7KxLBF3_1Uv2-fz0MX_NF-8vb_OHRY6Kl1PeCTTYVqQ1li3XRqIijVWnSsUBqraUzSGFSS3WulK1Noa4EAZUTVjLS3Z73DsG_7WlONnBRaT14R6_jRYqoZWWhquEyiOKwccYqLNjcEMT9ha4PdhkV_bXJnuwyYKwyaakuj-qKH2xcxRsREcbpKULhJNdevev_gdvVXCj</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Guevara-Cabrera, E.</creator><creator>Palomino-Ovando, M.A.</creator><creator>Flores-Desirena, B.</creator><creator>Gaspar-Armenta, J.A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Dispersive photonic crystals from the plane wave method</title><author>Guevara-Cabrera, E. ; Palomino-Ovando, M.A. ; Flores-Desirena, B. ; Gaspar-Armenta, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f2c7cb8e55c6b0573c4e5c8f4640118b63a63a6278b6c95849577e0227149ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Absorption</topic><topic>Arrays</topic><topic>Dielectrics</topic><topic>Dispersive photonic crystals</topic><topic>Magnesium oxide</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Photonic crystals</topic><topic>Polaritonic materials</topic><topic>Polaritonic photonic crystals</topic><topic>Pulse duration modulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guevara-Cabrera, E.</creatorcontrib><creatorcontrib>Palomino-Ovando, M.A.</creatorcontrib><creatorcontrib>Flores-Desirena, B.</creatorcontrib><creatorcontrib>Gaspar-Armenta, J.A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guevara-Cabrera, E.</au><au>Palomino-Ovando, M.A.</au><au>Flores-Desirena, B.</au><au>Gaspar-Armenta, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersive photonic crystals from the plane wave method</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>484</volume><spage>53</spage><epage>58</epage><pages>53-58</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2015.12.030</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2016-03, Vol.484, p.53-58
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_miscellaneous_1825453704
source ScienceDirect Journals (5 years ago - present)
subjects Absorption
Arrays
Dielectrics
Dispersive photonic crystals
Magnesium oxide
Mathematical analysis
Mathematical models
Photonic crystals
Polaritonic materials
Polaritonic photonic crystals
Pulse duration modulation
title Dispersive photonic crystals from the plane wave method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersive%20photonic%20crystals%20from%20the%20plane%20wave%20method&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Guevara-Cabrera,%20E.&rft.date=2016-03-01&rft.volume=484&rft.spage=53&rft.epage=58&rft.pages=53-58&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2015.12.030&rft_dat=%3Cproquest_cross%3E1825453704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825453704&rft_id=info:pmid/&rft_els_id=S0921452615303628&rfr_iscdi=true