Molecular dynamics estimates for the thermodynamic properties of the Fe–S liquid cores of the Moon, Io, Europa, and Ganymede
A molecular dynamics (MD) simulation is performed for the physical and chemical properties of solid and liquid Fe–S solutions using the embedded atom model (EAM) potential as applied to the internal structure of the Moon, Io, Europa, and Ganymede under the assumption that the satellites' cores...
Gespeichert in:
Veröffentlicht in: | Solar system research 2016-05, Vol.50 (3), p.165-183 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 3 |
container_start_page | 165 |
container_title | Solar system research |
container_volume | 50 |
creator | Kuskov, O. L. Belashchenko, D. K. |
description | A molecular dynamics (MD) simulation is performed for the physical and chemical properties of solid and liquid Fe–S solutions using the embedded atom model (EAM) potential as applied to the internal structure of the Moon, Io, Europa, and Ganymede under the assumption that the satellites' cores can be described by a two-component iron–sulfur system. Calculated results are presented for the thermodynamic parameters including the caloric, thermal, and elastic properties (specific heat, thermal expansion, Grüneisen parameter, density, compression module, velocity of sound, and adiabatic gradient) of the Fe–S solutions at sulfur concentrations of 0–18 at %, temperatures of up to 2500 K, and pressures of up to 14 GPa. The velocity of sound, which increases as pressure rises, is weakly dependent on sulfur concentration and temperature. For the Moon’s outer Fe–S core (~5 GPa/2000 K), which contains 6–16 at % (3.5–10 wt %) sulfur, the density and the velocity of sound are estimated at 6.3–7.0 g/cm
3
and 4000 ± 50 m/s, respectively. The MD calculations are compared with the interpretation of the
Apollo
observations (Weber et al., 2011) to show a good consistency of the velocity of
P
-waves in the Moon’s liquid core whereas the thermodynamic density of the Fe–S core is not consistent with the seismic models with ρ = 5.1–5.2 g/cm
3
(Garcia et al., 2011; Weber et al., 2011). The revision the density values for the core leads to the revision of its size and mass. At sulfur concentrations of 3.5–10 wt %, the density of the Fe–S melt is 20–30% higher that the seismic density of the core. Therefore, the most likely radius of the Moon’s outer core must be less than 330 km (Weber et al., 2011) because, provided that the constraint on the Moon’s mass and moment of inertia is satisfied, an increase in the density of the core must lead to a reduction of its radius. For Jupiter’s Galilean moons Io, Europa, and Ganymede, constraints are obtained on the size, density, and sound velocity of the Fe–S liquid cores. The geophysical and geochemical characteristics of the internal structure of the Moon and Jupiter’s moons are compared. The calculations of the adiabatic gradient at the
P
–
T
conditions for the Fe–S cores of the Moon, Io, Europa, and Ganymede suggest the top-down crystallization of the core (Fe-snow scenario). |
doi_str_mv | 10.1134/S0038094616030035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825453665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825453665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-f7159412f9cf2aa57b8b2aa27812ee60c6fc37aa9dc6a35e68c097a0264acbae3</originalsourceid><addsrcrecordid>eNqNkc1Kw0AQxxdRsFYfwNuCFw-N7keymxyl2Fpo8VA9h-1mVlOSbLubHHoR38E39Enc2oKiCB6GGfj__sN8IHROyRWlPL6eE8JTksWCCsJDnRygXijTiMeMH6LeVo62-jE68X5JCCVEih56mdkKdFcph4tNo-pSewy-LWvVgsfGOtw-wzZcbfcAXjm7AteWAbDmUx_B--vbHFfluisLrK37kmbWNgM8sQN82wWfGmDVFHismk0NBZyiI6MqD2f73EePo9uH4V00vR9PhjfTSPOUtZGRNMliykymDVMqkYt0ETKTKWUAgmhhNJdKZYUWiicgUk0yqQgTsdILBbyPLnd9w-zrLiyY16XXUFWqAdv5nKYsiRMuRPIPlKSSZyKjAb34gS5t55qwSE5lRhJJRCwDRXeUdtZ7ByZfuXBft8kpybfPy389L3jYzuMD2zyB-9b5T9MHEy6cDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790570647</pqid></control><display><type>article</type><title>Molecular dynamics estimates for the thermodynamic properties of the Fe–S liquid cores of the Moon, Io, Europa, and Ganymede</title><source>SpringerLink</source><creator>Kuskov, O. L. ; Belashchenko, D. K.</creator><creatorcontrib>Kuskov, O. L. ; Belashchenko, D. K.</creatorcontrib><description>A molecular dynamics (MD) simulation is performed for the physical and chemical properties of solid and liquid Fe–S solutions using the embedded atom model (EAM) potential as applied to the internal structure of the Moon, Io, Europa, and Ganymede under the assumption that the satellites' cores can be described by a two-component iron–sulfur system. Calculated results are presented for the thermodynamic parameters including the caloric, thermal, and elastic properties (specific heat, thermal expansion, Grüneisen parameter, density, compression module, velocity of sound, and adiabatic gradient) of the Fe–S solutions at sulfur concentrations of 0–18 at %, temperatures of up to 2500 K, and pressures of up to 14 GPa. The velocity of sound, which increases as pressure rises, is weakly dependent on sulfur concentration and temperature. For the Moon’s outer Fe–S core (~5 GPa/2000 K), which contains 6–16 at % (3.5–10 wt %) sulfur, the density and the velocity of sound are estimated at 6.3–7.0 g/cm
3
and 4000 ± 50 m/s, respectively. The MD calculations are compared with the interpretation of the
Apollo
observations (Weber et al., 2011) to show a good consistency of the velocity of
P
-waves in the Moon’s liquid core whereas the thermodynamic density of the Fe–S core is not consistent with the seismic models with ρ = 5.1–5.2 g/cm
3
(Garcia et al., 2011; Weber et al., 2011). The revision the density values for the core leads to the revision of its size and mass. At sulfur concentrations of 3.5–10 wt %, the density of the Fe–S melt is 20–30% higher that the seismic density of the core. Therefore, the most likely radius of the Moon’s outer core must be less than 330 km (Weber et al., 2011) because, provided that the constraint on the Moon’s mass and moment of inertia is satisfied, an increase in the density of the core must lead to a reduction of its radius. For Jupiter’s Galilean moons Io, Europa, and Ganymede, constraints are obtained on the size, density, and sound velocity of the Fe–S liquid cores. The geophysical and geochemical characteristics of the internal structure of the Moon and Jupiter’s moons are compared. The calculations of the adiabatic gradient at the
P
–
T
conditions for the Fe–S cores of the Moon, Io, Europa, and Ganymede suggest the top-down crystallization of the core (Fe-snow scenario).</description><identifier>ISSN: 0038-0946</identifier><identifier>EISSN: 1608-3423</identifier><identifier>DOI: 10.1134/S0038094616030035</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Astronomy ; Astrophysics and Astroparticles ; Astrophysics and Cosmology ; Chemical properties ; Cores ; Crystallization ; Density ; Elastic properties ; Ganymede ; Jupiter (planet) ; Jupiter satellites ; Liquids ; Mathematical models ; Moon ; Moons ; Observations and Techniques ; Physics ; Physics and Astronomy ; Planetology ; Simulation ; Solar system ; Specific heat ; Sulfur ; Thermal expansion ; Thermodynamics</subject><ispartof>Solar system research, 2016-05, Vol.50 (3), p.165-183</ispartof><rights>Pleiades Publishing, Inc. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-f7159412f9cf2aa57b8b2aa27812ee60c6fc37aa9dc6a35e68c097a0264acbae3</citedby><cites>FETCH-LOGICAL-c382t-f7159412f9cf2aa57b8b2aa27812ee60c6fc37aa9dc6a35e68c097a0264acbae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0038094616030035$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0038094616030035$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kuskov, O. L.</creatorcontrib><creatorcontrib>Belashchenko, D. K.</creatorcontrib><title>Molecular dynamics estimates for the thermodynamic properties of the Fe–S liquid cores of the Moon, Io, Europa, and Ganymede</title><title>Solar system research</title><addtitle>Sol Syst Res</addtitle><description>A molecular dynamics (MD) simulation is performed for the physical and chemical properties of solid and liquid Fe–S solutions using the embedded atom model (EAM) potential as applied to the internal structure of the Moon, Io, Europa, and Ganymede under the assumption that the satellites' cores can be described by a two-component iron–sulfur system. Calculated results are presented for the thermodynamic parameters including the caloric, thermal, and elastic properties (specific heat, thermal expansion, Grüneisen parameter, density, compression module, velocity of sound, and adiabatic gradient) of the Fe–S solutions at sulfur concentrations of 0–18 at %, temperatures of up to 2500 K, and pressures of up to 14 GPa. The velocity of sound, which increases as pressure rises, is weakly dependent on sulfur concentration and temperature. For the Moon’s outer Fe–S core (~5 GPa/2000 K), which contains 6–16 at % (3.5–10 wt %) sulfur, the density and the velocity of sound are estimated at 6.3–7.0 g/cm
3
and 4000 ± 50 m/s, respectively. The MD calculations are compared with the interpretation of the
Apollo
observations (Weber et al., 2011) to show a good consistency of the velocity of
P
-waves in the Moon’s liquid core whereas the thermodynamic density of the Fe–S core is not consistent with the seismic models with ρ = 5.1–5.2 g/cm
3
(Garcia et al., 2011; Weber et al., 2011). The revision the density values for the core leads to the revision of its size and mass. At sulfur concentrations of 3.5–10 wt %, the density of the Fe–S melt is 20–30% higher that the seismic density of the core. Therefore, the most likely radius of the Moon’s outer core must be less than 330 km (Weber et al., 2011) because, provided that the constraint on the Moon’s mass and moment of inertia is satisfied, an increase in the density of the core must lead to a reduction of its radius. For Jupiter’s Galilean moons Io, Europa, and Ganymede, constraints are obtained on the size, density, and sound velocity of the Fe–S liquid cores. The geophysical and geochemical characteristics of the internal structure of the Moon and Jupiter’s moons are compared. The calculations of the adiabatic gradient at the
P
–
T
conditions for the Fe–S cores of the Moon, Io, Europa, and Ganymede suggest the top-down crystallization of the core (Fe-snow scenario).</description><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Astrophysics and Cosmology</subject><subject>Chemical properties</subject><subject>Cores</subject><subject>Crystallization</subject><subject>Density</subject><subject>Elastic properties</subject><subject>Ganymede</subject><subject>Jupiter (planet)</subject><subject>Jupiter satellites</subject><subject>Liquids</subject><subject>Mathematical models</subject><subject>Moon</subject><subject>Moons</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planetology</subject><subject>Simulation</subject><subject>Solar system</subject><subject>Specific heat</subject><subject>Sulfur</subject><subject>Thermal expansion</subject><subject>Thermodynamics</subject><issn>0038-0946</issn><issn>1608-3423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc1Kw0AQxxdRsFYfwNuCFw-N7keymxyl2Fpo8VA9h-1mVlOSbLubHHoR38E39Enc2oKiCB6GGfj__sN8IHROyRWlPL6eE8JTksWCCsJDnRygXijTiMeMH6LeVo62-jE68X5JCCVEih56mdkKdFcph4tNo-pSewy-LWvVgsfGOtw-wzZcbfcAXjm7AteWAbDmUx_B--vbHFfluisLrK37kmbWNgM8sQN82wWfGmDVFHismk0NBZyiI6MqD2f73EePo9uH4V00vR9PhjfTSPOUtZGRNMliykymDVMqkYt0ETKTKWUAgmhhNJdKZYUWiicgUk0yqQgTsdILBbyPLnd9w-zrLiyY16XXUFWqAdv5nKYsiRMuRPIPlKSSZyKjAb34gS5t55qwSE5lRhJJRCwDRXeUdtZ7ByZfuXBft8kpybfPy389L3jYzuMD2zyB-9b5T9MHEy6cDg</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Kuskov, O. L.</creator><creator>Belashchenko, D. K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160501</creationdate><title>Molecular dynamics estimates for the thermodynamic properties of the Fe–S liquid cores of the Moon, Io, Europa, and Ganymede</title><author>Kuskov, O. L. ; Belashchenko, D. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-f7159412f9cf2aa57b8b2aa27812ee60c6fc37aa9dc6a35e68c097a0264acbae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Astrophysics and Cosmology</topic><topic>Chemical properties</topic><topic>Cores</topic><topic>Crystallization</topic><topic>Density</topic><topic>Elastic properties</topic><topic>Ganymede</topic><topic>Jupiter (planet)</topic><topic>Jupiter satellites</topic><topic>Liquids</topic><topic>Mathematical models</topic><topic>Moon</topic><topic>Moons</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planetology</topic><topic>Simulation</topic><topic>Solar system</topic><topic>Specific heat</topic><topic>Sulfur</topic><topic>Thermal expansion</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuskov, O. L.</creatorcontrib><creatorcontrib>Belashchenko, D. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar system research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuskov, O. L.</au><au>Belashchenko, D. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics estimates for the thermodynamic properties of the Fe–S liquid cores of the Moon, Io, Europa, and Ganymede</atitle><jtitle>Solar system research</jtitle><stitle>Sol Syst Res</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>50</volume><issue>3</issue><spage>165</spage><epage>183</epage><pages>165-183</pages><issn>0038-0946</issn><eissn>1608-3423</eissn><abstract>A molecular dynamics (MD) simulation is performed for the physical and chemical properties of solid and liquid Fe–S solutions using the embedded atom model (EAM) potential as applied to the internal structure of the Moon, Io, Europa, and Ganymede under the assumption that the satellites' cores can be described by a two-component iron–sulfur system. Calculated results are presented for the thermodynamic parameters including the caloric, thermal, and elastic properties (specific heat, thermal expansion, Grüneisen parameter, density, compression module, velocity of sound, and adiabatic gradient) of the Fe–S solutions at sulfur concentrations of 0–18 at %, temperatures of up to 2500 K, and pressures of up to 14 GPa. The velocity of sound, which increases as pressure rises, is weakly dependent on sulfur concentration and temperature. For the Moon’s outer Fe–S core (~5 GPa/2000 K), which contains 6–16 at % (3.5–10 wt %) sulfur, the density and the velocity of sound are estimated at 6.3–7.0 g/cm
3
and 4000 ± 50 m/s, respectively. The MD calculations are compared with the interpretation of the
Apollo
observations (Weber et al., 2011) to show a good consistency of the velocity of
P
-waves in the Moon’s liquid core whereas the thermodynamic density of the Fe–S core is not consistent with the seismic models with ρ = 5.1–5.2 g/cm
3
(Garcia et al., 2011; Weber et al., 2011). The revision the density values for the core leads to the revision of its size and mass. At sulfur concentrations of 3.5–10 wt %, the density of the Fe–S melt is 20–30% higher that the seismic density of the core. Therefore, the most likely radius of the Moon’s outer core must be less than 330 km (Weber et al., 2011) because, provided that the constraint on the Moon’s mass and moment of inertia is satisfied, an increase in the density of the core must lead to a reduction of its radius. For Jupiter’s Galilean moons Io, Europa, and Ganymede, constraints are obtained on the size, density, and sound velocity of the Fe–S liquid cores. The geophysical and geochemical characteristics of the internal structure of the Moon and Jupiter’s moons are compared. The calculations of the adiabatic gradient at the
P
–
T
conditions for the Fe–S cores of the Moon, Io, Europa, and Ganymede suggest the top-down crystallization of the core (Fe-snow scenario).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0038094616030035</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0946 |
ispartof | Solar system research, 2016-05, Vol.50 (3), p.165-183 |
issn | 0038-0946 1608-3423 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825453665 |
source | SpringerLink |
subjects | Astronomy Astrophysics and Astroparticles Astrophysics and Cosmology Chemical properties Cores Crystallization Density Elastic properties Ganymede Jupiter (planet) Jupiter satellites Liquids Mathematical models Moon Moons Observations and Techniques Physics Physics and Astronomy Planetology Simulation Solar system Specific heat Sulfur Thermal expansion Thermodynamics |
title | Molecular dynamics estimates for the thermodynamic properties of the Fe–S liquid cores of the Moon, Io, Europa, and Ganymede |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20estimates%20for%20the%20thermodynamic%20properties%20of%20the%20Fe%E2%80%93S%20liquid%20cores%20of%20the%20Moon,%20Io,%20Europa,%20and%20Ganymede&rft.jtitle=Solar%20system%20research&rft.au=Kuskov,%20O.%20L.&rft.date=2016-05-01&rft.volume=50&rft.issue=3&rft.spage=165&rft.epage=183&rft.pages=165-183&rft.issn=0038-0946&rft.eissn=1608-3423&rft_id=info:doi/10.1134/S0038094616030035&rft_dat=%3Cproquest_cross%3E1825453665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790570647&rft_id=info:pmid/&rfr_iscdi=true |