Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape

Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2016-06, Vol.28 (24), p.244003-244003
Hauptverfasser: Wittmann, René, Marechal, Matthieu, Mecke, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244003
container_issue 24
container_start_page 244003
container_title Journal of physics. Condensed matter
container_volume 28
creator Wittmann, René
Marechal, Matthieu
Mecke, Klaus
description Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results.
doi_str_mv 10.1088/0953-8984/28/24/244003
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825450546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1789034175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-aa854592db0ce49acb1c98f0b25b12e65a1726f70281f2f5df27c5b39c9de7e53</originalsourceid><addsrcrecordid>eNqFkU1rFTEYhYMo9rb6F0p2uhlvPmcSd1KsCgU3Cu5CJnnjTZmPNJlZ3H9vxlsvCIVu3myec044B6FrSj5QotSeaMkbpZXYM7Vn9QpBCH-BdpS3tGmF-vUS7c7QBbos5Z4QIhQXr9EF6yiVWnU7dLxdJ29HmBY74BFsWTPg5QBzPuIwZzzNU1PSAXJ0FTjY7HGyeYlugPIRpww-uiVOv_EQH9boscvHslmlPCeoHBQc8jxulmchLgeb4A16FexQ4O3je4V-3n7-cfO1ufv-5dvNp7vGSc6XxlolhdTM98SB0Nb11GkVSM9kTxm00tKOtaEjTNHAgvSBdU72XDvtoQPJr9D7k2_90sMKZTFjLA6GwU4wr8VQxWoAkaJ9Hu2UJlzQbnNtT6jLcykZgkk5jjYfDSVmW8hs5ZutfMOUYfX-XagKrx8z1n4Ef5b9m6QC705AnJO5n9c81XaMG_-zMcmHSrInyGfy_wDKpqpb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789034175</pqid></control><display><type>article</type><title>Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Wittmann, René ; Marechal, Matthieu ; Mecke, Klaus</creator><creatorcontrib>Wittmann, René ; Marechal, Matthieu ; Mecke, Klaus</creatorcontrib><description>Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/28/24/244003</identifier><identifier>PMID: 27115987</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>colloids ; Computational fluid dynamics ; Computer simulation ; Condensed matter ; continuum theory ; Density functional theory ; Fluids ; Liquid crystals ; non-spherical particles ; Particles (of physics) ; Phase diagrams</subject><ispartof>Journal of physics. Condensed matter, 2016-06, Vol.28 (24), p.244003-244003</ispartof><rights>2016 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-aa854592db0ce49acb1c98f0b25b12e65a1726f70281f2f5df27c5b39c9de7e53</citedby><cites>FETCH-LOGICAL-c533t-aa854592db0ce49acb1c98f0b25b12e65a1726f70281f2f5df27c5b39c9de7e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/28/24/244003/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27115987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wittmann, René</creatorcontrib><creatorcontrib>Marechal, Matthieu</creatorcontrib><creatorcontrib>Mecke, Klaus</creatorcontrib><title>Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results.</description><subject>colloids</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Condensed matter</subject><subject>continuum theory</subject><subject>Density functional theory</subject><subject>Fluids</subject><subject>Liquid crystals</subject><subject>non-spherical particles</subject><subject>Particles (of physics)</subject><subject>Phase diagrams</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFTEYhYMo9rb6F0p2uhlvPmcSd1KsCgU3Cu5CJnnjTZmPNJlZ3H9vxlsvCIVu3myec044B6FrSj5QotSeaMkbpZXYM7Vn9QpBCH-BdpS3tGmF-vUS7c7QBbos5Z4QIhQXr9EF6yiVWnU7dLxdJ29HmBY74BFsWTPg5QBzPuIwZzzNU1PSAXJ0FTjY7HGyeYlugPIRpww-uiVOv_EQH9boscvHslmlPCeoHBQc8jxulmchLgeb4A16FexQ4O3je4V-3n7-cfO1ufv-5dvNp7vGSc6XxlolhdTM98SB0Nb11GkVSM9kTxm00tKOtaEjTNHAgvSBdU72XDvtoQPJr9D7k2_90sMKZTFjLA6GwU4wr8VQxWoAkaJ9Hu2UJlzQbnNtT6jLcykZgkk5jjYfDSVmW8hs5ZutfMOUYfX-XagKrx8z1n4Ef5b9m6QC705AnJO5n9c81XaMG_-zMcmHSrInyGfy_wDKpqpb</recordid><startdate>20160622</startdate><enddate>20160622</enddate><creator>Wittmann, René</creator><creator>Marechal, Matthieu</creator><creator>Mecke, Klaus</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160622</creationdate><title>Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape</title><author>Wittmann, René ; Marechal, Matthieu ; Mecke, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-aa854592db0ce49acb1c98f0b25b12e65a1726f70281f2f5df27c5b39c9de7e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>colloids</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Condensed matter</topic><topic>continuum theory</topic><topic>Density functional theory</topic><topic>Fluids</topic><topic>Liquid crystals</topic><topic>non-spherical particles</topic><topic>Particles (of physics)</topic><topic>Phase diagrams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wittmann, René</creatorcontrib><creatorcontrib>Marechal, Matthieu</creatorcontrib><creatorcontrib>Mecke, Klaus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wittmann, René</au><au>Marechal, Matthieu</au><au>Mecke, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2016-06-22</date><risdate>2016</risdate><volume>28</volume><issue>24</issue><spage>244003</spage><epage>244003</epage><pages>244003-244003</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27115987</pmid><doi>10.1088/0953-8984/28/24/244003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2016-06, Vol.28 (24), p.244003-244003
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_1825450546
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects colloids
Computational fluid dynamics
Computer simulation
Condensed matter
continuum theory
Density functional theory
Fluids
Liquid crystals
non-spherical particles
Particles (of physics)
Phase diagrams
title Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20measure%20theory%20for%20non-spherical%20hard%20particles:%20predicting%20liquid%20crystal%20properties%20from%20the%20particle%20shape&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Wittmann,%20Ren%C3%A9&rft.date=2016-06-22&rft.volume=28&rft.issue=24&rft.spage=244003&rft.epage=244003&rft.pages=244003-244003&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/28/24/244003&rft_dat=%3Cproquest_iop_j%3E1789034175%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789034175&rft_id=info:pmid/27115987&rfr_iscdi=true