Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape
Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2016-06, Vol.28 (24), p.244003-244003 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 244003 |
---|---|
container_issue | 24 |
container_start_page | 244003 |
container_title | Journal of physics. Condensed matter |
container_volume | 28 |
creator | Wittmann, René Marechal, Matthieu Mecke, Klaus |
description | Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results. |
doi_str_mv | 10.1088/0953-8984/28/24/244003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825450546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1789034175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-aa854592db0ce49acb1c98f0b25b12e65a1726f70281f2f5df27c5b39c9de7e53</originalsourceid><addsrcrecordid>eNqFkU1rFTEYhYMo9rb6F0p2uhlvPmcSd1KsCgU3Cu5CJnnjTZmPNJlZ3H9vxlsvCIVu3myec044B6FrSj5QotSeaMkbpZXYM7Vn9QpBCH-BdpS3tGmF-vUS7c7QBbos5Z4QIhQXr9EF6yiVWnU7dLxdJ29HmBY74BFsWTPg5QBzPuIwZzzNU1PSAXJ0FTjY7HGyeYlugPIRpww-uiVOv_EQH9boscvHslmlPCeoHBQc8jxulmchLgeb4A16FexQ4O3je4V-3n7-cfO1ufv-5dvNp7vGSc6XxlolhdTM98SB0Nb11GkVSM9kTxm00tKOtaEjTNHAgvSBdU72XDvtoQPJr9D7k2_90sMKZTFjLA6GwU4wr8VQxWoAkaJ9Hu2UJlzQbnNtT6jLcykZgkk5jjYfDSVmW8hs5ZutfMOUYfX-XagKrx8z1n4Ef5b9m6QC705AnJO5n9c81XaMG_-zMcmHSrInyGfy_wDKpqpb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789034175</pqid></control><display><type>article</type><title>Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Wittmann, René ; Marechal, Matthieu ; Mecke, Klaus</creator><creatorcontrib>Wittmann, René ; Marechal, Matthieu ; Mecke, Klaus</creatorcontrib><description>Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/28/24/244003</identifier><identifier>PMID: 27115987</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>colloids ; Computational fluid dynamics ; Computer simulation ; Condensed matter ; continuum theory ; Density functional theory ; Fluids ; Liquid crystals ; non-spherical particles ; Particles (of physics) ; Phase diagrams</subject><ispartof>Journal of physics. Condensed matter, 2016-06, Vol.28 (24), p.244003-244003</ispartof><rights>2016 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-aa854592db0ce49acb1c98f0b25b12e65a1726f70281f2f5df27c5b39c9de7e53</citedby><cites>FETCH-LOGICAL-c533t-aa854592db0ce49acb1c98f0b25b12e65a1726f70281f2f5df27c5b39c9de7e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/28/24/244003/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27115987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wittmann, René</creatorcontrib><creatorcontrib>Marechal, Matthieu</creatorcontrib><creatorcontrib>Mecke, Klaus</creatorcontrib><title>Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results.</description><subject>colloids</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Condensed matter</subject><subject>continuum theory</subject><subject>Density functional theory</subject><subject>Fluids</subject><subject>Liquid crystals</subject><subject>non-spherical particles</subject><subject>Particles (of physics)</subject><subject>Phase diagrams</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFTEYhYMo9rb6F0p2uhlvPmcSd1KsCgU3Cu5CJnnjTZmPNJlZ3H9vxlsvCIVu3myec044B6FrSj5QotSeaMkbpZXYM7Vn9QpBCH-BdpS3tGmF-vUS7c7QBbos5Z4QIhQXr9EF6yiVWnU7dLxdJ29HmBY74BFsWTPg5QBzPuIwZzzNU1PSAXJ0FTjY7HGyeYlugPIRpww-uiVOv_EQH9boscvHslmlPCeoHBQc8jxulmchLgeb4A16FexQ4O3je4V-3n7-cfO1ufv-5dvNp7vGSc6XxlolhdTM98SB0Nb11GkVSM9kTxm00tKOtaEjTNHAgvSBdU72XDvtoQPJr9D7k2_90sMKZTFjLA6GwU4wr8VQxWoAkaJ9Hu2UJlzQbnNtT6jLcykZgkk5jjYfDSVmW8hs5ZutfMOUYfX-XagKrx8z1n4Ef5b9m6QC705AnJO5n9c81XaMG_-zMcmHSrInyGfy_wDKpqpb</recordid><startdate>20160622</startdate><enddate>20160622</enddate><creator>Wittmann, René</creator><creator>Marechal, Matthieu</creator><creator>Mecke, Klaus</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160622</creationdate><title>Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape</title><author>Wittmann, René ; Marechal, Matthieu ; Mecke, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-aa854592db0ce49acb1c98f0b25b12e65a1726f70281f2f5df27c5b39c9de7e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>colloids</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Condensed matter</topic><topic>continuum theory</topic><topic>Density functional theory</topic><topic>Fluids</topic><topic>Liquid crystals</topic><topic>non-spherical particles</topic><topic>Particles (of physics)</topic><topic>Phase diagrams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wittmann, René</creatorcontrib><creatorcontrib>Marechal, Matthieu</creatorcontrib><creatorcontrib>Mecke, Klaus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wittmann, René</au><au>Marechal, Matthieu</au><au>Mecke, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2016-06-22</date><risdate>2016</risdate><volume>28</volume><issue>24</issue><spage>244003</spage><epage>244003</epage><pages>244003-244003</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27115987</pmid><doi>10.1088/0953-8984/28/24/244003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2016-06, Vol.28 (24), p.244003-244003 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_proquest_miscellaneous_1825450546 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | colloids Computational fluid dynamics Computer simulation Condensed matter continuum theory Density functional theory Fluids Liquid crystals non-spherical particles Particles (of physics) Phase diagrams |
title | Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20measure%20theory%20for%20non-spherical%20hard%20particles:%20predicting%20liquid%20crystal%20properties%20from%20the%20particle%20shape&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Wittmann,%20Ren%C3%A9&rft.date=2016-06-22&rft.volume=28&rft.issue=24&rft.spage=244003&rft.epage=244003&rft.pages=244003-244003&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/28/24/244003&rft_dat=%3Cproquest_iop_j%3E1789034175%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789034175&rft_id=info:pmid/27115987&rfr_iscdi=true |