Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-DOF helicopter

In this paper, an adaptive learning algorithm is proposed for an interval type-2 fuzzy fractional order controller. The use of fractional order controller adds more degrees of freedom which makes it possible to obtain superior performance in comparison with ordinary differential controllers. A fract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2016-06, Vol.193, p.268-279
Hauptverfasser: Jalalian Khakshour, Alireza, Ahmadieh Khanesar, Mojtaba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue
container_start_page 268
container_title Neurocomputing (Amsterdam)
container_volume 193
creator Jalalian Khakshour, Alireza
Ahmadieh Khanesar, Mojtaba
description In this paper, an adaptive learning algorithm is proposed for an interval type-2 fuzzy fractional order controller. The use of fractional order controller adds more degrees of freedom which makes it possible to obtain superior performance in comparison with ordinary differential controllers. A fractional order reference model is used to define the desired trajectory of the nonlinear dynamic system. The structure of the system is based on the feedback error learning method. The stability of the adaptation laws is proved using Lyapunov theory. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulation results show that the proposed control algorithm outperforms the case when ordinary differential fuzzy controller is used. Furthermore, it is shown that it is possible to define a master chaotic system as a reference model and obtain synchronization between the two chaotic systems using the proposed approach. In the simulation part the synchronization between two Duffing–Holmes system is also achieved. In order to show the implementability of the proposed method, it is used to control a real time laboratory setup 2-DOF helicopter. It is shown that the proposed fractional order controller can be implemented in a low cost embedded system and can successfully control a highly nonlinear dynamic system.
doi_str_mv 10.1016/j.neucom.2016.02.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825449533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231216001946</els_id><sourcerecordid>1808680197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f48aa6ae8306071f985ce0f5ea3bff0cdc84e457ddb3132c226334d0fc37a10b3</originalsourceid><addsrcrecordid>eNqNkU-LFDEQxYMoOK5-Aw85eum2kvSftAdB1l1dWNmLnkMmXdGM3Z22klZm_fJmmD0vQkFR8HuvqHqMvRZQCxDd20O94ObiXMsy1SBrEM0TthO6l5WWunvKdjDItpJKyOfsRUoHANELOezY3y9xxIkTeiRcHHJP1uUQFzvxSCMSd3HJFCe-pbB85_m4YiW53-7vj7xspcItmP9E-pl4yrS5vBG-4zfzOuGMS7YnM17Kcll9vLvmP3AKLq4Z6SV75u2U8NVDv2Dfrq--Xn6ubu8-3Vx-uK2c6mWufKOt7SxqBR30wg-6dQi-Rav23oMbnW6waftx3CuhpJOyU6oZwRe5FbBXF-zN2Xel-GvDlM0cksNpsgvGLRmhZds0Q6vUf6CgOw1i6AvanFFHMaXyQLNSmC0djQBzisUczDkWc4rFgDQlliJ7f5Zhufh3QDLJhdPnx0DoshljeNzgH6wjmhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808680197</pqid></control><display><type>article</type><title>Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-DOF helicopter</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jalalian Khakshour, Alireza ; Ahmadieh Khanesar, Mojtaba</creator><creatorcontrib>Jalalian Khakshour, Alireza ; Ahmadieh Khanesar, Mojtaba</creatorcontrib><description>In this paper, an adaptive learning algorithm is proposed for an interval type-2 fuzzy fractional order controller. The use of fractional order controller adds more degrees of freedom which makes it possible to obtain superior performance in comparison with ordinary differential controllers. A fractional order reference model is used to define the desired trajectory of the nonlinear dynamic system. The structure of the system is based on the feedback error learning method. The stability of the adaptation laws is proved using Lyapunov theory. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulation results show that the proposed control algorithm outperforms the case when ordinary differential fuzzy controller is used. Furthermore, it is shown that it is possible to define a master chaotic system as a reference model and obtain synchronization between the two chaotic systems using the proposed approach. In the simulation part the synchronization between two Duffing–Holmes system is also achieved. In order to show the implementability of the proposed method, it is used to control a real time laboratory setup 2-DOF helicopter. It is shown that the proposed fractional order controller can be implemented in a low cost embedded system and can successfully control a highly nonlinear dynamic system.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2016.02.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer simulation ; Control theory ; Controllers ; Dynamical systems ; Feedback error earning ; Fractional order control ; Helicopters ; Learning ; Model reference adaptive control ; Nonlinear dynamics ; Synchronism ; Type-2 fuzzy neural networks</subject><ispartof>Neurocomputing (Amsterdam), 2016-06, Vol.193, p.268-279</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f48aa6ae8306071f985ce0f5ea3bff0cdc84e457ddb3132c226334d0fc37a10b3</citedby><cites>FETCH-LOGICAL-c372t-f48aa6ae8306071f985ce0f5ea3bff0cdc84e457ddb3132c226334d0fc37a10b3</cites><orcidid>0000-0001-5583-7295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2016.02.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jalalian Khakshour, Alireza</creatorcontrib><creatorcontrib>Ahmadieh Khanesar, Mojtaba</creatorcontrib><title>Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-DOF helicopter</title><title>Neurocomputing (Amsterdam)</title><description>In this paper, an adaptive learning algorithm is proposed for an interval type-2 fuzzy fractional order controller. The use of fractional order controller adds more degrees of freedom which makes it possible to obtain superior performance in comparison with ordinary differential controllers. A fractional order reference model is used to define the desired trajectory of the nonlinear dynamic system. The structure of the system is based on the feedback error learning method. The stability of the adaptation laws is proved using Lyapunov theory. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulation results show that the proposed control algorithm outperforms the case when ordinary differential fuzzy controller is used. Furthermore, it is shown that it is possible to define a master chaotic system as a reference model and obtain synchronization between the two chaotic systems using the proposed approach. In the simulation part the synchronization between two Duffing–Holmes system is also achieved. In order to show the implementability of the proposed method, it is used to control a real time laboratory setup 2-DOF helicopter. It is shown that the proposed fractional order controller can be implemented in a low cost embedded system and can successfully control a highly nonlinear dynamic system.</description><subject>Computer simulation</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Dynamical systems</subject><subject>Feedback error earning</subject><subject>Fractional order control</subject><subject>Helicopters</subject><subject>Learning</subject><subject>Model reference adaptive control</subject><subject>Nonlinear dynamics</subject><subject>Synchronism</subject><subject>Type-2 fuzzy neural networks</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU-LFDEQxYMoOK5-Aw85eum2kvSftAdB1l1dWNmLnkMmXdGM3Z22klZm_fJmmD0vQkFR8HuvqHqMvRZQCxDd20O94ObiXMsy1SBrEM0TthO6l5WWunvKdjDItpJKyOfsRUoHANELOezY3y9xxIkTeiRcHHJP1uUQFzvxSCMSd3HJFCe-pbB85_m4YiW53-7vj7xspcItmP9E-pl4yrS5vBG-4zfzOuGMS7YnM17Kcll9vLvmP3AKLq4Z6SV75u2U8NVDv2Dfrq--Xn6ubu8-3Vx-uK2c6mWufKOt7SxqBR30wg-6dQi-Rav23oMbnW6waftx3CuhpJOyU6oZwRe5FbBXF-zN2Xel-GvDlM0cksNpsgvGLRmhZds0Q6vUf6CgOw1i6AvanFFHMaXyQLNSmC0djQBzisUczDkWc4rFgDQlliJ7f5Zhufh3QDLJhdPnx0DoshljeNzgH6wjmhc</recordid><startdate>20160612</startdate><enddate>20160612</enddate><creator>Jalalian Khakshour, Alireza</creator><creator>Ahmadieh Khanesar, Mojtaba</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5583-7295</orcidid></search><sort><creationdate>20160612</creationdate><title>Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-DOF helicopter</title><author>Jalalian Khakshour, Alireza ; Ahmadieh Khanesar, Mojtaba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f48aa6ae8306071f985ce0f5ea3bff0cdc84e457ddb3132c226334d0fc37a10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Dynamical systems</topic><topic>Feedback error earning</topic><topic>Fractional order control</topic><topic>Helicopters</topic><topic>Learning</topic><topic>Model reference adaptive control</topic><topic>Nonlinear dynamics</topic><topic>Synchronism</topic><topic>Type-2 fuzzy neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalalian Khakshour, Alireza</creatorcontrib><creatorcontrib>Ahmadieh Khanesar, Mojtaba</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalalian Khakshour, Alireza</au><au>Ahmadieh Khanesar, Mojtaba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-DOF helicopter</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2016-06-12</date><risdate>2016</risdate><volume>193</volume><spage>268</spage><epage>279</epage><pages>268-279</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>In this paper, an adaptive learning algorithm is proposed for an interval type-2 fuzzy fractional order controller. The use of fractional order controller adds more degrees of freedom which makes it possible to obtain superior performance in comparison with ordinary differential controllers. A fractional order reference model is used to define the desired trajectory of the nonlinear dynamic system. The structure of the system is based on the feedback error learning method. The stability of the adaptation laws is proved using Lyapunov theory. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulation results show that the proposed control algorithm outperforms the case when ordinary differential fuzzy controller is used. Furthermore, it is shown that it is possible to define a master chaotic system as a reference model and obtain synchronization between the two chaotic systems using the proposed approach. In the simulation part the synchronization between two Duffing–Holmes system is also achieved. In order to show the implementability of the proposed method, it is used to control a real time laboratory setup 2-DOF helicopter. It is shown that the proposed fractional order controller can be implemented in a low cost embedded system and can successfully control a highly nonlinear dynamic system.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2016.02.014</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5583-7295</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2016-06, Vol.193, p.268-279
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1825449533
source Access via ScienceDirect (Elsevier)
subjects Computer simulation
Control theory
Controllers
Dynamical systems
Feedback error earning
Fractional order control
Helicopters
Learning
Model reference adaptive control
Nonlinear dynamics
Synchronism
Type-2 fuzzy neural networks
title Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-DOF helicopter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20reference%20fractional%20order%20control%20using%20type-2%20fuzzy%20neural%20networks%20structure:%20Implementation%20on%20a%202-DOF%20helicopter&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Jalalian%20Khakshour,%20Alireza&rft.date=2016-06-12&rft.volume=193&rft.spage=268&rft.epage=279&rft.pages=268-279&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2016.02.014&rft_dat=%3Cproquest_cross%3E1808680197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808680197&rft_id=info:pmid/&rft_els_id=S0925231216001946&rfr_iscdi=true