Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-DOF helicopter
In this paper, an adaptive learning algorithm is proposed for an interval type-2 fuzzy fractional order controller. The use of fractional order controller adds more degrees of freedom which makes it possible to obtain superior performance in comparison with ordinary differential controllers. A fract...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2016-06, Vol.193, p.268-279 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | |
container_start_page | 268 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 193 |
creator | Jalalian Khakshour, Alireza Ahmadieh Khanesar, Mojtaba |
description | In this paper, an adaptive learning algorithm is proposed for an interval type-2 fuzzy fractional order controller. The use of fractional order controller adds more degrees of freedom which makes it possible to obtain superior performance in comparison with ordinary differential controllers. A fractional order reference model is used to define the desired trajectory of the nonlinear dynamic system. The structure of the system is based on the feedback error learning method. The stability of the adaptation laws is proved using Lyapunov theory. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulation results show that the proposed control algorithm outperforms the case when ordinary differential fuzzy controller is used. Furthermore, it is shown that it is possible to define a master chaotic system as a reference model and obtain synchronization between the two chaotic systems using the proposed approach. In the simulation part the synchronization between two Duffing–Holmes system is also achieved. In order to show the implementability of the proposed method, it is used to control a real time laboratory setup 2-DOF helicopter. It is shown that the proposed fractional order controller can be implemented in a low cost embedded system and can successfully control a highly nonlinear dynamic system. |
doi_str_mv | 10.1016/j.neucom.2016.02.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825449533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231216001946</els_id><sourcerecordid>1808680197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f48aa6ae8306071f985ce0f5ea3bff0cdc84e457ddb3132c226334d0fc37a10b3</originalsourceid><addsrcrecordid>eNqNkU-LFDEQxYMoOK5-Aw85eum2kvSftAdB1l1dWNmLnkMmXdGM3Z22klZm_fJmmD0vQkFR8HuvqHqMvRZQCxDd20O94ObiXMsy1SBrEM0TthO6l5WWunvKdjDItpJKyOfsRUoHANELOezY3y9xxIkTeiRcHHJP1uUQFzvxSCMSd3HJFCe-pbB85_m4YiW53-7vj7xspcItmP9E-pl4yrS5vBG-4zfzOuGMS7YnM17Kcll9vLvmP3AKLq4Z6SV75u2U8NVDv2Dfrq--Xn6ubu8-3Vx-uK2c6mWufKOt7SxqBR30wg-6dQi-Rav23oMbnW6waftx3CuhpJOyU6oZwRe5FbBXF-zN2Xel-GvDlM0cksNpsgvGLRmhZds0Q6vUf6CgOw1i6AvanFFHMaXyQLNSmC0djQBzisUczDkWc4rFgDQlliJ7f5Zhufh3QDLJhdPnx0DoshljeNzgH6wjmhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808680197</pqid></control><display><type>article</type><title>Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-DOF helicopter</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jalalian Khakshour, Alireza ; Ahmadieh Khanesar, Mojtaba</creator><creatorcontrib>Jalalian Khakshour, Alireza ; Ahmadieh Khanesar, Mojtaba</creatorcontrib><description>In this paper, an adaptive learning algorithm is proposed for an interval type-2 fuzzy fractional order controller. The use of fractional order controller adds more degrees of freedom which makes it possible to obtain superior performance in comparison with ordinary differential controllers. A fractional order reference model is used to define the desired trajectory of the nonlinear dynamic system. The structure of the system is based on the feedback error learning method. The stability of the adaptation laws is proved using Lyapunov theory. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulation results show that the proposed control algorithm outperforms the case when ordinary differential fuzzy controller is used. Furthermore, it is shown that it is possible to define a master chaotic system as a reference model and obtain synchronization between the two chaotic systems using the proposed approach. In the simulation part the synchronization between two Duffing–Holmes system is also achieved. In order to show the implementability of the proposed method, it is used to control a real time laboratory setup 2-DOF helicopter. It is shown that the proposed fractional order controller can be implemented in a low cost embedded system and can successfully control a highly nonlinear dynamic system.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2016.02.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer simulation ; Control theory ; Controllers ; Dynamical systems ; Feedback error earning ; Fractional order control ; Helicopters ; Learning ; Model reference adaptive control ; Nonlinear dynamics ; Synchronism ; Type-2 fuzzy neural networks</subject><ispartof>Neurocomputing (Amsterdam), 2016-06, Vol.193, p.268-279</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f48aa6ae8306071f985ce0f5ea3bff0cdc84e457ddb3132c226334d0fc37a10b3</citedby><cites>FETCH-LOGICAL-c372t-f48aa6ae8306071f985ce0f5ea3bff0cdc84e457ddb3132c226334d0fc37a10b3</cites><orcidid>0000-0001-5583-7295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2016.02.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jalalian Khakshour, Alireza</creatorcontrib><creatorcontrib>Ahmadieh Khanesar, Mojtaba</creatorcontrib><title>Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-DOF helicopter</title><title>Neurocomputing (Amsterdam)</title><description>In this paper, an adaptive learning algorithm is proposed for an interval type-2 fuzzy fractional order controller. The use of fractional order controller adds more degrees of freedom which makes it possible to obtain superior performance in comparison with ordinary differential controllers. A fractional order reference model is used to define the desired trajectory of the nonlinear dynamic system. The structure of the system is based on the feedback error learning method. The stability of the adaptation laws is proved using Lyapunov theory. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulation results show that the proposed control algorithm outperforms the case when ordinary differential fuzzy controller is used. Furthermore, it is shown that it is possible to define a master chaotic system as a reference model and obtain synchronization between the two chaotic systems using the proposed approach. In the simulation part the synchronization between two Duffing–Holmes system is also achieved. In order to show the implementability of the proposed method, it is used to control a real time laboratory setup 2-DOF helicopter. It is shown that the proposed fractional order controller can be implemented in a low cost embedded system and can successfully control a highly nonlinear dynamic system.</description><subject>Computer simulation</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Dynamical systems</subject><subject>Feedback error earning</subject><subject>Fractional order control</subject><subject>Helicopters</subject><subject>Learning</subject><subject>Model reference adaptive control</subject><subject>Nonlinear dynamics</subject><subject>Synchronism</subject><subject>Type-2 fuzzy neural networks</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU-LFDEQxYMoOK5-Aw85eum2kvSftAdB1l1dWNmLnkMmXdGM3Z22klZm_fJmmD0vQkFR8HuvqHqMvRZQCxDd20O94ObiXMsy1SBrEM0TthO6l5WWunvKdjDItpJKyOfsRUoHANELOezY3y9xxIkTeiRcHHJP1uUQFzvxSCMSd3HJFCe-pbB85_m4YiW53-7vj7xspcItmP9E-pl4yrS5vBG-4zfzOuGMS7YnM17Kcll9vLvmP3AKLq4Z6SV75u2U8NVDv2Dfrq--Xn6ubu8-3Vx-uK2c6mWufKOt7SxqBR30wg-6dQi-Rav23oMbnW6waftx3CuhpJOyU6oZwRe5FbBXF-zN2Xel-GvDlM0cksNpsgvGLRmhZds0Q6vUf6CgOw1i6AvanFFHMaXyQLNSmC0djQBzisUczDkWc4rFgDQlliJ7f5Zhufh3QDLJhdPnx0DoshljeNzgH6wjmhc</recordid><startdate>20160612</startdate><enddate>20160612</enddate><creator>Jalalian Khakshour, Alireza</creator><creator>Ahmadieh Khanesar, Mojtaba</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5583-7295</orcidid></search><sort><creationdate>20160612</creationdate><title>Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-DOF helicopter</title><author>Jalalian Khakshour, Alireza ; Ahmadieh Khanesar, Mojtaba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f48aa6ae8306071f985ce0f5ea3bff0cdc84e457ddb3132c226334d0fc37a10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Dynamical systems</topic><topic>Feedback error earning</topic><topic>Fractional order control</topic><topic>Helicopters</topic><topic>Learning</topic><topic>Model reference adaptive control</topic><topic>Nonlinear dynamics</topic><topic>Synchronism</topic><topic>Type-2 fuzzy neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalalian Khakshour, Alireza</creatorcontrib><creatorcontrib>Ahmadieh Khanesar, Mojtaba</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalalian Khakshour, Alireza</au><au>Ahmadieh Khanesar, Mojtaba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-DOF helicopter</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2016-06-12</date><risdate>2016</risdate><volume>193</volume><spage>268</spage><epage>279</epage><pages>268-279</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>In this paper, an adaptive learning algorithm is proposed for an interval type-2 fuzzy fractional order controller. The use of fractional order controller adds more degrees of freedom which makes it possible to obtain superior performance in comparison with ordinary differential controllers. A fractional order reference model is used to define the desired trajectory of the nonlinear dynamic system. The structure of the system is based on the feedback error learning method. The stability of the adaptation laws is proved using Lyapunov theory. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulation results show that the proposed control algorithm outperforms the case when ordinary differential fuzzy controller is used. Furthermore, it is shown that it is possible to define a master chaotic system as a reference model and obtain synchronization between the two chaotic systems using the proposed approach. In the simulation part the synchronization between two Duffing–Holmes system is also achieved. In order to show the implementability of the proposed method, it is used to control a real time laboratory setup 2-DOF helicopter. It is shown that the proposed fractional order controller can be implemented in a low cost embedded system and can successfully control a highly nonlinear dynamic system.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2016.02.014</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5583-7295</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2016-06, Vol.193, p.268-279 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825449533 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computer simulation Control theory Controllers Dynamical systems Feedback error earning Fractional order control Helicopters Learning Model reference adaptive control Nonlinear dynamics Synchronism Type-2 fuzzy neural networks |
title | Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-DOF helicopter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20reference%20fractional%20order%20control%20using%20type-2%20fuzzy%20neural%20networks%20structure:%20Implementation%20on%20a%202-DOF%20helicopter&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Jalalian%20Khakshour,%20Alireza&rft.date=2016-06-12&rft.volume=193&rft.spage=268&rft.epage=279&rft.pages=268-279&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2016.02.014&rft_dat=%3Cproquest_cross%3E1808680197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808680197&rft_id=info:pmid/&rft_els_id=S0925231216001946&rfr_iscdi=true |