Aerodynamic performance improvement of the UAS-S4 Éhecatl morphing airfoil using novel optimization techniques
In this paper, we present a morphing wing concept of the airfoil of the S4 unmanned aerial system, the new optimization methodology and the results obtained for multiple flight conditions. The reduction of the airfoil drag coefficient has been achieved using an in-house optimization tool based on th...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2016-06, Vol.230 (7), p.1164-1180 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1180 |
---|---|
container_issue | 7 |
container_start_page | 1164 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering |
container_volume | 230 |
creator | Gabor, Oliviu Sugar Simon, Antoine Koreanschi, Andreea Botez, Ruxandra M |
description | In this paper, we present a morphing wing concept of the airfoil of the S4 unmanned aerial system, the new optimization methodology and the results obtained for multiple flight conditions. The reduction of the airfoil drag coefficient has been achieved using an in-house optimization tool based on the relatively new Artificial Bee Colony algorithm, coupled with the Broyden–Fletcher–Goldfarb–Shanno algorithm to provide a final refinement of the solution. A broad range of speeds and angles of attack have been studied. An advanced, multi-objective, commercially available optimizing tool was used to validate the proposed optimization strategy and the obtained results. The aerodynamic calculations were performed using the XFOIL solver, a two-dimensional linear panel method, coupled with an incompressible boundary layer model and a transition estimation criterion, to provide accurate estimations of the airfoil drag coefficient. Drag reductions of up to 14% have been achieved for a wide range of different flight conditions, using very small displacements of the airfoil surface, of only 2.5 mm. |
doi_str_mv | 10.1177/0954410015605548 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825447764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954410015605548</sage_id><sourcerecordid>4089523381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-77e9efdeb6fd9c62cb31b6e757d35d0f19086ac6016397898d62e942ba4e6333</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouK7ePQa8eKkmzVdzXMQvEDysnks2nbpZ2qQmXUH_gb_LP2bKehDBEAjDPO87MxmETim5oFSpS6IF55QQKiQRgld7aFYSTgtGSrGPZlO6mPKH6CilDclHSDZDYQExNO_e9M7iAWIbYm-8Bez6IYY36MGPOLR4XAN-XiyLJcdfn2uwZuxwH-Kwdv4FG5d1rsPbNEU-yzochtH17sOMLng8gl1797qFdIwOWtMlOPl55-jp5vrp6q54eLy9v1o8FJbxciyUAg1tAyvZNtrK0q4YXUlQQjVMNKSlmlTSWEmoZFpVumpkCZqXK8NBMsbm6Hxnm4eYyo5175KFrjMewjbVtCrzdykleUbP_qCbsI0-N1dTpWW-QotMkR1lY0gpQlsP0fUmvteU1NMC6r8LyJJiJ0nmBX6Z_sd_A0KHhog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796796595</pqid></control><display><type>article</type><title>Aerodynamic performance improvement of the UAS-S4 Éhecatl morphing airfoil using novel optimization techniques</title><source>SAGE Complete</source><creator>Gabor, Oliviu Sugar ; Simon, Antoine ; Koreanschi, Andreea ; Botez, Ruxandra M</creator><creatorcontrib>Gabor, Oliviu Sugar ; Simon, Antoine ; Koreanschi, Andreea ; Botez, Ruxandra M</creatorcontrib><description>In this paper, we present a morphing wing concept of the airfoil of the S4 unmanned aerial system, the new optimization methodology and the results obtained for multiple flight conditions. The reduction of the airfoil drag coefficient has been achieved using an in-house optimization tool based on the relatively new Artificial Bee Colony algorithm, coupled with the Broyden–Fletcher–Goldfarb–Shanno algorithm to provide a final refinement of the solution. A broad range of speeds and angles of attack have been studied. An advanced, multi-objective, commercially available optimizing tool was used to validate the proposed optimization strategy and the obtained results. The aerodynamic calculations were performed using the XFOIL solver, a two-dimensional linear panel method, coupled with an incompressible boundary layer model and a transition estimation criterion, to provide accurate estimations of the airfoil drag coefficient. Drag reductions of up to 14% have been achieved for a wide range of different flight conditions, using very small displacements of the airfoil surface, of only 2.5 mm.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1177/0954410015605548</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aerodynamics ; Aerospace engineering ; Airfoils ; Algorithms ; Drag coefficients ; Flight conditions ; Joining ; Mathematical models ; Morphing ; Optimization ; Unmanned aerial vehicles</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2016-06, Vol.230 (7), p.1164-1180</ispartof><rights>IMechE 2015</rights><rights>Copyright SAGE PUBLICATIONS, INC. Jun 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-77e9efdeb6fd9c62cb31b6e757d35d0f19086ac6016397898d62e942ba4e6333</citedby><cites>FETCH-LOGICAL-c342t-77e9efdeb6fd9c62cb31b6e757d35d0f19086ac6016397898d62e942ba4e6333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954410015605548$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954410015605548$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Gabor, Oliviu Sugar</creatorcontrib><creatorcontrib>Simon, Antoine</creatorcontrib><creatorcontrib>Koreanschi, Andreea</creatorcontrib><creatorcontrib>Botez, Ruxandra M</creatorcontrib><title>Aerodynamic performance improvement of the UAS-S4 Éhecatl morphing airfoil using novel optimization techniques</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>In this paper, we present a morphing wing concept of the airfoil of the S4 unmanned aerial system, the new optimization methodology and the results obtained for multiple flight conditions. The reduction of the airfoil drag coefficient has been achieved using an in-house optimization tool based on the relatively new Artificial Bee Colony algorithm, coupled with the Broyden–Fletcher–Goldfarb–Shanno algorithm to provide a final refinement of the solution. A broad range of speeds and angles of attack have been studied. An advanced, multi-objective, commercially available optimizing tool was used to validate the proposed optimization strategy and the obtained results. The aerodynamic calculations were performed using the XFOIL solver, a two-dimensional linear panel method, coupled with an incompressible boundary layer model and a transition estimation criterion, to provide accurate estimations of the airfoil drag coefficient. Drag reductions of up to 14% have been achieved for a wide range of different flight conditions, using very small displacements of the airfoil surface, of only 2.5 mm.</description><subject>Aerodynamics</subject><subject>Aerospace engineering</subject><subject>Airfoils</subject><subject>Algorithms</subject><subject>Drag coefficients</subject><subject>Flight conditions</subject><subject>Joining</subject><subject>Mathematical models</subject><subject>Morphing</subject><subject>Optimization</subject><subject>Unmanned aerial vehicles</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LxDAQhoMouK7ePQa8eKkmzVdzXMQvEDysnks2nbpZ2qQmXUH_gb_LP2bKehDBEAjDPO87MxmETim5oFSpS6IF55QQKiQRgld7aFYSTgtGSrGPZlO6mPKH6CilDclHSDZDYQExNO_e9M7iAWIbYm-8Bez6IYY36MGPOLR4XAN-XiyLJcdfn2uwZuxwH-Kwdv4FG5d1rsPbNEU-yzochtH17sOMLng8gl1797qFdIwOWtMlOPl55-jp5vrp6q54eLy9v1o8FJbxciyUAg1tAyvZNtrK0q4YXUlQQjVMNKSlmlTSWEmoZFpVumpkCZqXK8NBMsbm6Hxnm4eYyo5175KFrjMewjbVtCrzdykleUbP_qCbsI0-N1dTpWW-QotMkR1lY0gpQlsP0fUmvteU1NMC6r8LyJJiJ0nmBX6Z_sd_A0KHhog</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Gabor, Oliviu Sugar</creator><creator>Simon, Antoine</creator><creator>Koreanschi, Andreea</creator><creator>Botez, Ruxandra M</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201606</creationdate><title>Aerodynamic performance improvement of the UAS-S4 Éhecatl morphing airfoil using novel optimization techniques</title><author>Gabor, Oliviu Sugar ; Simon, Antoine ; Koreanschi, Andreea ; Botez, Ruxandra M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-77e9efdeb6fd9c62cb31b6e757d35d0f19086ac6016397898d62e942ba4e6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerodynamics</topic><topic>Aerospace engineering</topic><topic>Airfoils</topic><topic>Algorithms</topic><topic>Drag coefficients</topic><topic>Flight conditions</topic><topic>Joining</topic><topic>Mathematical models</topic><topic>Morphing</topic><topic>Optimization</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabor, Oliviu Sugar</creatorcontrib><creatorcontrib>Simon, Antoine</creatorcontrib><creatorcontrib>Koreanschi, Andreea</creatorcontrib><creatorcontrib>Botez, Ruxandra M</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabor, Oliviu Sugar</au><au>Simon, Antoine</au><au>Koreanschi, Andreea</au><au>Botez, Ruxandra M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamic performance improvement of the UAS-S4 Éhecatl morphing airfoil using novel optimization techniques</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2016-06</date><risdate>2016</risdate><volume>230</volume><issue>7</issue><spage>1164</spage><epage>1180</epage><pages>1164-1180</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>In this paper, we present a morphing wing concept of the airfoil of the S4 unmanned aerial system, the new optimization methodology and the results obtained for multiple flight conditions. The reduction of the airfoil drag coefficient has been achieved using an in-house optimization tool based on the relatively new Artificial Bee Colony algorithm, coupled with the Broyden–Fletcher–Goldfarb–Shanno algorithm to provide a final refinement of the solution. A broad range of speeds and angles of attack have been studied. An advanced, multi-objective, commercially available optimizing tool was used to validate the proposed optimization strategy and the obtained results. The aerodynamic calculations were performed using the XFOIL solver, a two-dimensional linear panel method, coupled with an incompressible boundary layer model and a transition estimation criterion, to provide accurate estimations of the airfoil drag coefficient. Drag reductions of up to 14% have been achieved for a wide range of different flight conditions, using very small displacements of the airfoil surface, of only 2.5 mm.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954410015605548</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4100 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2016-06, Vol.230 (7), p.1164-1180 |
issn | 0954-4100 2041-3025 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825447764 |
source | SAGE Complete |
subjects | Aerodynamics Aerospace engineering Airfoils Algorithms Drag coefficients Flight conditions Joining Mathematical models Morphing Optimization Unmanned aerial vehicles |
title | Aerodynamic performance improvement of the UAS-S4 Éhecatl morphing airfoil using novel optimization techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamic%20performance%20improvement%20of%20the%20UAS-S4%20%C3%89hecatl%20morphing%20airfoil%20using%20novel%20optimization%20techniques&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Gabor,%20Oliviu%20Sugar&rft.date=2016-06&rft.volume=230&rft.issue=7&rft.spage=1164&rft.epage=1180&rft.pages=1164-1180&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1177/0954410015605548&rft_dat=%3Cproquest_cross%3E4089523381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1796796595&rft_id=info:pmid/&rft_sage_id=10.1177_0954410015605548&rfr_iscdi=true |