Pore and grain boundary migration under a temperature gradient: a phase-field model study

The collective migration behavior of pores and grain boundaries under a temperature gradient is studied for simple single crystal, bi-crystal and polycrystal configurations with a phase-field model formulism. For simulation of the microstructure of solids, composed of pores and grain boundaries, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modelling and simulation in materials science and engineering 2016-03, Vol.24 (3), p.35019-35028
1. Verfasser: Biner, S B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35028
container_issue 3
container_start_page 35019
container_title Modelling and simulation in materials science and engineering
container_volume 24
creator Biner, S B
description The collective migration behavior of pores and grain boundaries under a temperature gradient is studied for simple single crystal, bi-crystal and polycrystal configurations with a phase-field model formulism. For simulation of the microstructure of solids, composed of pores and grain boundaries, the results indicate that not only the volume fraction of pores, but also its spatial partitioning between the grain boundary junctions and the grain boundary segments appears to be important. In addition to various physical properties, the evolution kinetics, under given temperature gradients, will be strongly influenced with the initial morphology of a poly-crystalline microstructure.
doi_str_mv 10.1088/0965-0393/24/3/035019
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825447750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825447750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-5b52772074d2fcffd393e6ed2a6be809d67d6cebe61eef73797ffd710c6aa7fe3</originalsourceid><addsrcrecordid>eNp9kE1LHTEUhkOp4K31Jwihq27Gm49JMuOuSLWC0C4q6CrkJic1MpOMSWbhvzeXW2oXpasD73nOOcmD0Bkl55QMw5aMUnSEj3zL-i3fEi4IHd-hDeWSdlLQ-_do84c5Rh9KeSKEiIGpDXr4kTJgEx3-lU2IeJfW6Ex-wXNoQQ0p4hZAxgZXmBdo2doGWs8FiPWi5cujKdD5AJPDc3Iw4VJX9_IRHXkzFTj9XU_Q3dXXn5ffutvv1zeXX24723NRO7ETTClGVO-Yt9679kaQ4JiROxjI6KRy0sIOJAXwiqtRNUhRYqUxygM_QZ8Oe1OpQRcbKthHm2IEWzVlY8_U0KDPB2jJ6XmFUvUcioVpMhHSWjQdmOh7pQRpqDigNqdSMni95DA3JZoSvfet9y713qVmveb64PvtREiLfkprju3Xei5z-RvTi_MNpf9A_7_-FWHTkG0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825447750</pqid></control><display><type>article</type><title>Pore and grain boundary migration under a temperature gradient: a phase-field model study</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Biner, S B</creator><creatorcontrib>Biner, S B ; Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><description>The collective migration behavior of pores and grain boundaries under a temperature gradient is studied for simple single crystal, bi-crystal and polycrystal configurations with a phase-field model formulism. For simulation of the microstructure of solids, composed of pores and grain boundaries, the results indicate that not only the volume fraction of pores, but also its spatial partitioning between the grain boundary junctions and the grain boundary segments appears to be important. In addition to various physical properties, the evolution kinetics, under given temperature gradients, will be strongly influenced with the initial morphology of a poly-crystalline microstructure.</description><identifier>ISSN: 0965-0393</identifier><identifier>EISSN: 1361-651X</identifier><identifier>DOI: 10.1088/0965-0393/24/3/035019</identifier><identifier>CODEN: MSMEEU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>Computer simulation ; Evolution ; Grain boundaries ; MATERIALS SCIENCE ; Microstructure ; Migration ; phase-field model ; Physical properties ; pore and grain boundary migration ; Porosity ; Temperature gradient</subject><ispartof>Modelling and simulation in materials science and engineering, 2016-03, Vol.24 (3), p.35019-35028</ispartof><rights>2016 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-5b52772074d2fcffd393e6ed2a6be809d67d6cebe61eef73797ffd710c6aa7fe3</citedby><cites>FETCH-LOGICAL-c435t-5b52772074d2fcffd393e6ed2a6be809d67d6cebe61eef73797ffd710c6aa7fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0965-0393/24/3/035019/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1294278$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Biner, S B</creatorcontrib><creatorcontrib>Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><title>Pore and grain boundary migration under a temperature gradient: a phase-field model study</title><title>Modelling and simulation in materials science and engineering</title><addtitle>MSMSE</addtitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><description>The collective migration behavior of pores and grain boundaries under a temperature gradient is studied for simple single crystal, bi-crystal and polycrystal configurations with a phase-field model formulism. For simulation of the microstructure of solids, composed of pores and grain boundaries, the results indicate that not only the volume fraction of pores, but also its spatial partitioning between the grain boundary junctions and the grain boundary segments appears to be important. In addition to various physical properties, the evolution kinetics, under given temperature gradients, will be strongly influenced with the initial morphology of a poly-crystalline microstructure.</description><subject>Computer simulation</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>MATERIALS SCIENCE</subject><subject>Microstructure</subject><subject>Migration</subject><subject>phase-field model</subject><subject>Physical properties</subject><subject>pore and grain boundary migration</subject><subject>Porosity</subject><subject>Temperature gradient</subject><issn>0965-0393</issn><issn>1361-651X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LHTEUhkOp4K31Jwihq27Gm49JMuOuSLWC0C4q6CrkJic1MpOMSWbhvzeXW2oXpasD73nOOcmD0Bkl55QMw5aMUnSEj3zL-i3fEi4IHd-hDeWSdlLQ-_do84c5Rh9KeSKEiIGpDXr4kTJgEx3-lU2IeJfW6Ex-wXNoQQ0p4hZAxgZXmBdo2doGWs8FiPWi5cujKdD5AJPDc3Iw4VJX9_IRHXkzFTj9XU_Q3dXXn5ffutvv1zeXX24723NRO7ETTClGVO-Yt9679kaQ4JiROxjI6KRy0sIOJAXwiqtRNUhRYqUxygM_QZ8Oe1OpQRcbKthHm2IEWzVlY8_U0KDPB2jJ6XmFUvUcioVpMhHSWjQdmOh7pQRpqDigNqdSMni95DA3JZoSvfet9y713qVmveb64PvtREiLfkprju3Xei5z-RvTi_MNpf9A_7_-FWHTkG0</recordid><startdate>20160316</startdate><enddate>20160316</enddate><creator>Biner, S B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160316</creationdate><title>Pore and grain boundary migration under a temperature gradient: a phase-field model study</title><author>Biner, S B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-5b52772074d2fcffd393e6ed2a6be809d67d6cebe61eef73797ffd710c6aa7fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>MATERIALS SCIENCE</topic><topic>Microstructure</topic><topic>Migration</topic><topic>phase-field model</topic><topic>Physical properties</topic><topic>pore and grain boundary migration</topic><topic>Porosity</topic><topic>Temperature gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biner, S B</creatorcontrib><creatorcontrib>Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Modelling and simulation in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biner, S B</au><aucorp>Idaho National Lab. (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore and grain boundary migration under a temperature gradient: a phase-field model study</atitle><jtitle>Modelling and simulation in materials science and engineering</jtitle><stitle>MSMSE</stitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><date>2016-03-16</date><risdate>2016</risdate><volume>24</volume><issue>3</issue><spage>35019</spage><epage>35028</epage><pages>35019-35028</pages><issn>0965-0393</issn><eissn>1361-651X</eissn><coden>MSMEEU</coden><abstract>The collective migration behavior of pores and grain boundaries under a temperature gradient is studied for simple single crystal, bi-crystal and polycrystal configurations with a phase-field model formulism. For simulation of the microstructure of solids, composed of pores and grain boundaries, the results indicate that not only the volume fraction of pores, but also its spatial partitioning between the grain boundary junctions and the grain boundary segments appears to be important. In addition to various physical properties, the evolution kinetics, under given temperature gradients, will be strongly influenced with the initial morphology of a poly-crystalline microstructure.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/0965-0393/24/3/035019</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0965-0393
ispartof Modelling and simulation in materials science and engineering, 2016-03, Vol.24 (3), p.35019-35028
issn 0965-0393
1361-651X
language eng
recordid cdi_proquest_miscellaneous_1825447750
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Computer simulation
Evolution
Grain boundaries
MATERIALS SCIENCE
Microstructure
Migration
phase-field model
Physical properties
pore and grain boundary migration
Porosity
Temperature gradient
title Pore and grain boundary migration under a temperature gradient: a phase-field model study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore%20and%20grain%20boundary%20migration%20under%20a%20temperature%20gradient:%20a%20phase-field%20model%20study&rft.jtitle=Modelling%20and%20simulation%20in%20materials%20science%20and%20engineering&rft.au=Biner,%20S%20B&rft.aucorp=Idaho%20National%20Lab.%20(INL),%20Idaho%20Falls,%20ID%20(United%20States)&rft.date=2016-03-16&rft.volume=24&rft.issue=3&rft.spage=35019&rft.epage=35028&rft.pages=35019-35028&rft.issn=0965-0393&rft.eissn=1361-651X&rft.coden=MSMEEU&rft_id=info:doi/10.1088/0965-0393/24/3/035019&rft_dat=%3Cproquest_osti_%3E1825447750%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825447750&rft_id=info:pmid/&rfr_iscdi=true