Dynamical instability of laminated plates with external cutout
A method to study dynamical instability and non-linear parametric vibrations of symmetrically laminated plates of complex shapes and having different cutouts is proposed. The first-order shear deformation theory (FSDT) and the classical plate theory (CPT) are used to formulate a mathematical stateme...
Gespeichert in:
Veröffentlicht in: | International journal of non-linear mechanics 2016-05, Vol.81, p.103-114 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | |
container_start_page | 103 |
container_title | International journal of non-linear mechanics |
container_volume | 81 |
creator | Awrejcewicz, Jan Kurpa, Lidiya Mazur, Olga |
description | A method to study dynamical instability and non-linear parametric vibrations of symmetrically laminated plates of complex shapes and having different cutouts is proposed. The first-order shear deformation theory (FSDT) and the classical plate theory (CPT) are used to formulate a mathematical statement of the given problem. The presence of cutouts essentially complicates the solution of buckling problem, since the stress field is non-uniform. At first, a plane stress analysis is carried out using the variational Ritz method and the R-functions theory. The obtained results are applied to investigate buckling and parametric vibrations of laminated plates. The developed method uses the R-functions theory, and it may be directly employed to study laminated plates of arbitrary forms and different boundary conditions. Besides, the proposed method is numerical-analytical, what greatly facilitates a solution of similar-like non-linear problems. In order to show the advantage of the developed approach, instability zones and response curves for the layered cross- and angle-ply plates with external cutouts are constructed and discussed.
•Composite plates with cutouts, mixed boundary conditions and loading are studied.•Both CPT and FSDT matched with the R-functions theory are used.•Novel formulas for unknown functions Ψx and Ψy are given (formula (55)).•Instability zones of cross- and angle-ply plates are constructed and discussed. |
doi_str_mv | 10.1016/j.ijnonlinmec.2016.01.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825447092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746216000032</els_id><sourcerecordid>1825447092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-f55d36be1a7e24f8b244b4b3cd784b1461108ce9d026b78d55d577097d0e69c93</originalsourceid><addsrcrecordid>eNqNkE1LxDAURYMoOI7-h7pz05qkaZNuBBk_YcCNrkOavGJKJh2TVJ1_b4Zx4dLVg8u5F95B6JLgimDSXo-VHf3knfUb0BXNUYVJhTE9QgsiuCibthbHaJETXHLW0lN0FuOIM8gwX6Cbu51XG6uVK6yPSfXW2bQrpqFwOfYqgSm2Lp9YfNn0XsB3guAzrec0zekcnQzKRbj4vUv09nD_unoq1y-Pz6vbdakZblI5NI2p2x6I4kDZIHrKWM_6WhsuWE9YSwgWGjqDadtzYTLecI47bjC0ne7qJbo67G7D9DFDTHJjowbnlIdpjpII2jCWGzSj3QHVYYoxwCC3wW5U2EmC5d6ZHOUfZ3LvTGIis6HcXR26kH_5tBBk1Ba8BmMD6CTNZP-x8gOLW3t9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825447092</pqid></control><display><type>article</type><title>Dynamical instability of laminated plates with external cutout</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Awrejcewicz, Jan ; Kurpa, Lidiya ; Mazur, Olga</creator><creatorcontrib>Awrejcewicz, Jan ; Kurpa, Lidiya ; Mazur, Olga</creatorcontrib><description>A method to study dynamical instability and non-linear parametric vibrations of symmetrically laminated plates of complex shapes and having different cutouts is proposed. The first-order shear deformation theory (FSDT) and the classical plate theory (CPT) are used to formulate a mathematical statement of the given problem. The presence of cutouts essentially complicates the solution of buckling problem, since the stress field is non-uniform. At first, a plane stress analysis is carried out using the variational Ritz method and the R-functions theory. The obtained results are applied to investigate buckling and parametric vibrations of laminated plates. The developed method uses the R-functions theory, and it may be directly employed to study laminated plates of arbitrary forms and different boundary conditions. Besides, the proposed method is numerical-analytical, what greatly facilitates a solution of similar-like non-linear problems. In order to show the advantage of the developed approach, instability zones and response curves for the layered cross- and angle-ply plates with external cutouts are constructed and discussed.
•Composite plates with cutouts, mixed boundary conditions and loading are studied.•Both CPT and FSDT matched with the R-functions theory are used.•Novel formulas for unknown functions Ψx and Ψy are given (formula (55)).•Instability zones of cross- and angle-ply plates are constructed and discussed.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2016.01.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Buckling ; Instability ; Laminated plates ; Mathematical models ; Nonlinearity ; Parametric vibrations ; Plate theory ; Plates ; R-function theory ; Stability ; Vibration</subject><ispartof>International journal of non-linear mechanics, 2016-05, Vol.81, p.103-114</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-f55d36be1a7e24f8b244b4b3cd784b1461108ce9d026b78d55d577097d0e69c93</citedby><cites>FETCH-LOGICAL-c405t-f55d36be1a7e24f8b244b4b3cd784b1461108ce9d026b78d55d577097d0e69c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijnonlinmec.2016.01.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Awrejcewicz, Jan</creatorcontrib><creatorcontrib>Kurpa, Lidiya</creatorcontrib><creatorcontrib>Mazur, Olga</creatorcontrib><title>Dynamical instability of laminated plates with external cutout</title><title>International journal of non-linear mechanics</title><description>A method to study dynamical instability and non-linear parametric vibrations of symmetrically laminated plates of complex shapes and having different cutouts is proposed. The first-order shear deformation theory (FSDT) and the classical plate theory (CPT) are used to formulate a mathematical statement of the given problem. The presence of cutouts essentially complicates the solution of buckling problem, since the stress field is non-uniform. At first, a plane stress analysis is carried out using the variational Ritz method and the R-functions theory. The obtained results are applied to investigate buckling and parametric vibrations of laminated plates. The developed method uses the R-functions theory, and it may be directly employed to study laminated plates of arbitrary forms and different boundary conditions. Besides, the proposed method is numerical-analytical, what greatly facilitates a solution of similar-like non-linear problems. In order to show the advantage of the developed approach, instability zones and response curves for the layered cross- and angle-ply plates with external cutouts are constructed and discussed.
•Composite plates with cutouts, mixed boundary conditions and loading are studied.•Both CPT and FSDT matched with the R-functions theory are used.•Novel formulas for unknown functions Ψx and Ψy are given (formula (55)).•Instability zones of cross- and angle-ply plates are constructed and discussed.</description><subject>Buckling</subject><subject>Instability</subject><subject>Laminated plates</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Parametric vibrations</subject><subject>Plate theory</subject><subject>Plates</subject><subject>R-function theory</subject><subject>Stability</subject><subject>Vibration</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAURYMoOI7-h7pz05qkaZNuBBk_YcCNrkOavGJKJh2TVJ1_b4Zx4dLVg8u5F95B6JLgimDSXo-VHf3knfUb0BXNUYVJhTE9QgsiuCibthbHaJETXHLW0lN0FuOIM8gwX6Cbu51XG6uVK6yPSfXW2bQrpqFwOfYqgSm2Lp9YfNn0XsB3guAzrec0zekcnQzKRbj4vUv09nD_unoq1y-Pz6vbdakZblI5NI2p2x6I4kDZIHrKWM_6WhsuWE9YSwgWGjqDadtzYTLecI47bjC0ne7qJbo67G7D9DFDTHJjowbnlIdpjpII2jCWGzSj3QHVYYoxwCC3wW5U2EmC5d6ZHOUfZ3LvTGIis6HcXR26kH_5tBBk1Ba8BmMD6CTNZP-x8gOLW3t9</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Awrejcewicz, Jan</creator><creator>Kurpa, Lidiya</creator><creator>Mazur, Olga</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201605</creationdate><title>Dynamical instability of laminated plates with external cutout</title><author>Awrejcewicz, Jan ; Kurpa, Lidiya ; Mazur, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-f55d36be1a7e24f8b244b4b3cd784b1461108ce9d026b78d55d577097d0e69c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Buckling</topic><topic>Instability</topic><topic>Laminated plates</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Parametric vibrations</topic><topic>Plate theory</topic><topic>Plates</topic><topic>R-function theory</topic><topic>Stability</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awrejcewicz, Jan</creatorcontrib><creatorcontrib>Kurpa, Lidiya</creatorcontrib><creatorcontrib>Mazur, Olga</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awrejcewicz, Jan</au><au>Kurpa, Lidiya</au><au>Mazur, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical instability of laminated plates with external cutout</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2016-05</date><risdate>2016</risdate><volume>81</volume><spage>103</spage><epage>114</epage><pages>103-114</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>A method to study dynamical instability and non-linear parametric vibrations of symmetrically laminated plates of complex shapes and having different cutouts is proposed. The first-order shear deformation theory (FSDT) and the classical plate theory (CPT) are used to formulate a mathematical statement of the given problem. The presence of cutouts essentially complicates the solution of buckling problem, since the stress field is non-uniform. At first, a plane stress analysis is carried out using the variational Ritz method and the R-functions theory. The obtained results are applied to investigate buckling and parametric vibrations of laminated plates. The developed method uses the R-functions theory, and it may be directly employed to study laminated plates of arbitrary forms and different boundary conditions. Besides, the proposed method is numerical-analytical, what greatly facilitates a solution of similar-like non-linear problems. In order to show the advantage of the developed approach, instability zones and response curves for the layered cross- and angle-ply plates with external cutouts are constructed and discussed.
•Composite plates with cutouts, mixed boundary conditions and loading are studied.•Both CPT and FSDT matched with the R-functions theory are used.•Novel formulas for unknown functions Ψx and Ψy are given (formula (55)).•Instability zones of cross- and angle-ply plates are constructed and discussed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2016.01.002</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 2016-05, Vol.81, p.103-114 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825447092 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Buckling Instability Laminated plates Mathematical models Nonlinearity Parametric vibrations Plate theory Plates R-function theory Stability Vibration |
title | Dynamical instability of laminated plates with external cutout |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20instability%20of%20laminated%20plates%20with%20external%20cutout&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Awrejcewicz,%20Jan&rft.date=2016-05&rft.volume=81&rft.spage=103&rft.epage=114&rft.pages=103-114&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2016.01.002&rft_dat=%3Cproquest_cross%3E1825447092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825447092&rft_id=info:pmid/&rft_els_id=S0020746216000032&rfr_iscdi=true |