3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor
A 3D reconstruction method using feature points is presented and the parameters used to improve the reconstruction are discussed. The precision of the 3D reconstruction is improved by combining point clouds obtained from different viewpoints using structured light. A well-known algorithm for point c...
Gespeichert in:
Veröffentlicht in: | Mechatronics (Oxford) 2016-05, Vol.35, p.11-22 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | |
container_start_page | 11 |
container_title | Mechatronics (Oxford) |
container_volume | 35 |
creator | Takimoto, Rogério Yugo Tsuzuki, Marcos de Sales Guerra Vogelaar, Renato Martins, Thiago de Castro Sato, André Kubagawa Iwao, Yuma Gotoh, Toshiyuki Kagei, Seiichiro |
description | A 3D reconstruction method using feature points is presented and the parameters used to improve the reconstruction are discussed. The precision of the 3D reconstruction is improved by combining point clouds obtained from different viewpoints using structured light. A well-known algorithm for point cloud registration is the ICP (Iterative Closest Point) that determines the rotation and translation that, when applied to one of the point clouds, places both point clouds optimally. The ICP algorithm iteratively executes two main steps: point correspondence determination and registration algorithm. The point correspondence determination is a module that, if not properly executed, can make the ICP converge to a local minimum. To overcome this drawback, two techniques were used. A meaningful set of 3D points using a technique known as SIFT (Scale-invariant feature transform) was obtained and an ICP that uses statistics to generate a dynamic distance and color threshold to the distance allowed between closest points was implemented. The reconstruction precision improvement was implemented using meaningful point clouds and the ICP to increase the number of points in the 3D space. The surface reconstruction is performed using marching cubes and filters to remove the noise and to smooth the surface. The factors that influence the 3D reconstruction precision are here discussed and analyzed. A detailed discussion of the number of frames used by the ICP and the ICP parameters is presented. |
doi_str_mv | 10.1016/j.mechatronics.2015.10.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825445636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957415815001932</els_id><sourcerecordid>1825445636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-f88584e7c2cda7b749dcfc0d0676918b68143e1569cb91591b8bf66595eb1db63</originalsourceid><addsrcrecordid>eNqNkE9LxDAUxIMouK5-h-DJS2vetvlTb7qrq7AgiF68hDZN1yxtUpNU8dvbuh48enrw5jcDMwidA0mBALvcpZ1Wb2X0zhoV0gUBOgopgfwAzUDwLMkJYYdoRgrKkxyoOEYnIewIAQ7AZ-g1W2GvlbMh-kFF4ywubY27oY2mbzXunbERq9YN9chtzYiVP9QQjN3iErfuE_djggnT92l9k6xw0DY4f4qOmrIN-uz3ztHL3e3z8j7ZPK4fltebRGWUx6QRgopcc7VQdckrnhe1ahSpCeOsAFExAXmmgbJCVQXQAipRNYzRguoK6oplc3Sxz-29ex90iLIzQem2La12Q5AgFjTPKcsm9GqPKu9C8LqRvTdd6b8kEDkNKnfy76ByGnTSxkFH82pv1mOZD6O9DMpoq3Rtxv5R1s78J-Yb642Gvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825445636</pqid></control><display><type>article</type><title>3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor</title><source>Elsevier ScienceDirect Journals</source><creator>Takimoto, Rogério Yugo ; Tsuzuki, Marcos de Sales Guerra ; Vogelaar, Renato ; Martins, Thiago de Castro ; Sato, André Kubagawa ; Iwao, Yuma ; Gotoh, Toshiyuki ; Kagei, Seiichiro</creator><creatorcontrib>Takimoto, Rogério Yugo ; Tsuzuki, Marcos de Sales Guerra ; Vogelaar, Renato ; Martins, Thiago de Castro ; Sato, André Kubagawa ; Iwao, Yuma ; Gotoh, Toshiyuki ; Kagei, Seiichiro</creatorcontrib><description>A 3D reconstruction method using feature points is presented and the parameters used to improve the reconstruction are discussed. The precision of the 3D reconstruction is improved by combining point clouds obtained from different viewpoints using structured light. A well-known algorithm for point cloud registration is the ICP (Iterative Closest Point) that determines the rotation and translation that, when applied to one of the point clouds, places both point clouds optimally. The ICP algorithm iteratively executes two main steps: point correspondence determination and registration algorithm. The point correspondence determination is a module that, if not properly executed, can make the ICP converge to a local minimum. To overcome this drawback, two techniques were used. A meaningful set of 3D points using a technique known as SIFT (Scale-invariant feature transform) was obtained and an ICP that uses statistics to generate a dynamic distance and color threshold to the distance allowed between closest points was implemented. The reconstruction precision improvement was implemented using meaningful point clouds and the ICP to increase the number of points in the 3D space. The surface reconstruction is performed using marching cubes and filters to remove the noise and to smooth the surface. The factors that influence the 3D reconstruction precision are here discussed and analyzed. A detailed discussion of the number of frames used by the ICP and the ICP parameters is presented.</description><identifier>ISSN: 0957-4158</identifier><identifier>EISSN: 1873-4006</identifier><identifier>DOI: 10.1016/j.mechatronics.2015.10.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Color ; Feature extraction ; Marching cubes ; Optimization ; Point registration ; Reconstruction ; Statistics ; Structured-light cameras ; Surface reconstruction ; Three dimensional models ; Transforms ; Translations</subject><ispartof>Mechatronics (Oxford), 2016-05, Vol.35, p.11-22</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-f88584e7c2cda7b749dcfc0d0676918b68143e1569cb91591b8bf66595eb1db63</citedby><cites>FETCH-LOGICAL-c357t-f88584e7c2cda7b749dcfc0d0676918b68143e1569cb91591b8bf66595eb1db63</cites><orcidid>0000-0002-8495-2337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957415815001932$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Takimoto, Rogério Yugo</creatorcontrib><creatorcontrib>Tsuzuki, Marcos de Sales Guerra</creatorcontrib><creatorcontrib>Vogelaar, Renato</creatorcontrib><creatorcontrib>Martins, Thiago de Castro</creatorcontrib><creatorcontrib>Sato, André Kubagawa</creatorcontrib><creatorcontrib>Iwao, Yuma</creatorcontrib><creatorcontrib>Gotoh, Toshiyuki</creatorcontrib><creatorcontrib>Kagei, Seiichiro</creatorcontrib><title>3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor</title><title>Mechatronics (Oxford)</title><description>A 3D reconstruction method using feature points is presented and the parameters used to improve the reconstruction are discussed. The precision of the 3D reconstruction is improved by combining point clouds obtained from different viewpoints using structured light. A well-known algorithm for point cloud registration is the ICP (Iterative Closest Point) that determines the rotation and translation that, when applied to one of the point clouds, places both point clouds optimally. The ICP algorithm iteratively executes two main steps: point correspondence determination and registration algorithm. The point correspondence determination is a module that, if not properly executed, can make the ICP converge to a local minimum. To overcome this drawback, two techniques were used. A meaningful set of 3D points using a technique known as SIFT (Scale-invariant feature transform) was obtained and an ICP that uses statistics to generate a dynamic distance and color threshold to the distance allowed between closest points was implemented. The reconstruction precision improvement was implemented using meaningful point clouds and the ICP to increase the number of points in the 3D space. The surface reconstruction is performed using marching cubes and filters to remove the noise and to smooth the surface. The factors that influence the 3D reconstruction precision are here discussed and analyzed. A detailed discussion of the number of frames used by the ICP and the ICP parameters is presented.</description><subject>Algorithms</subject><subject>Color</subject><subject>Feature extraction</subject><subject>Marching cubes</subject><subject>Optimization</subject><subject>Point registration</subject><subject>Reconstruction</subject><subject>Statistics</subject><subject>Structured-light cameras</subject><subject>Surface reconstruction</subject><subject>Three dimensional models</subject><subject>Transforms</subject><subject>Translations</subject><issn>0957-4158</issn><issn>1873-4006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAUxIMouK5-h-DJS2vetvlTb7qrq7AgiF68hDZN1yxtUpNU8dvbuh48enrw5jcDMwidA0mBALvcpZ1Wb2X0zhoV0gUBOgopgfwAzUDwLMkJYYdoRgrKkxyoOEYnIewIAQ7AZ-g1W2GvlbMh-kFF4ywubY27oY2mbzXunbERq9YN9chtzYiVP9QQjN3iErfuE_djggnT92l9k6xw0DY4f4qOmrIN-uz3ztHL3e3z8j7ZPK4fltebRGWUx6QRgopcc7VQdckrnhe1ahSpCeOsAFExAXmmgbJCVQXQAipRNYzRguoK6oplc3Sxz-29ex90iLIzQem2La12Q5AgFjTPKcsm9GqPKu9C8LqRvTdd6b8kEDkNKnfy76ByGnTSxkFH82pv1mOZD6O9DMpoq3Rtxv5R1s78J-Yb642Gvw</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Takimoto, Rogério Yugo</creator><creator>Tsuzuki, Marcos de Sales Guerra</creator><creator>Vogelaar, Renato</creator><creator>Martins, Thiago de Castro</creator><creator>Sato, André Kubagawa</creator><creator>Iwao, Yuma</creator><creator>Gotoh, Toshiyuki</creator><creator>Kagei, Seiichiro</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8495-2337</orcidid></search><sort><creationdate>201605</creationdate><title>3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor</title><author>Takimoto, Rogério Yugo ; Tsuzuki, Marcos de Sales Guerra ; Vogelaar, Renato ; Martins, Thiago de Castro ; Sato, André Kubagawa ; Iwao, Yuma ; Gotoh, Toshiyuki ; Kagei, Seiichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-f88584e7c2cda7b749dcfc0d0676918b68143e1569cb91591b8bf66595eb1db63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Feature extraction</topic><topic>Marching cubes</topic><topic>Optimization</topic><topic>Point registration</topic><topic>Reconstruction</topic><topic>Statistics</topic><topic>Structured-light cameras</topic><topic>Surface reconstruction</topic><topic>Three dimensional models</topic><topic>Transforms</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takimoto, Rogério Yugo</creatorcontrib><creatorcontrib>Tsuzuki, Marcos de Sales Guerra</creatorcontrib><creatorcontrib>Vogelaar, Renato</creatorcontrib><creatorcontrib>Martins, Thiago de Castro</creatorcontrib><creatorcontrib>Sato, André Kubagawa</creatorcontrib><creatorcontrib>Iwao, Yuma</creatorcontrib><creatorcontrib>Gotoh, Toshiyuki</creatorcontrib><creatorcontrib>Kagei, Seiichiro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechatronics (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takimoto, Rogério Yugo</au><au>Tsuzuki, Marcos de Sales Guerra</au><au>Vogelaar, Renato</au><au>Martins, Thiago de Castro</au><au>Sato, André Kubagawa</au><au>Iwao, Yuma</au><au>Gotoh, Toshiyuki</au><au>Kagei, Seiichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor</atitle><jtitle>Mechatronics (Oxford)</jtitle><date>2016-05</date><risdate>2016</risdate><volume>35</volume><spage>11</spage><epage>22</epage><pages>11-22</pages><issn>0957-4158</issn><eissn>1873-4006</eissn><abstract>A 3D reconstruction method using feature points is presented and the parameters used to improve the reconstruction are discussed. The precision of the 3D reconstruction is improved by combining point clouds obtained from different viewpoints using structured light. A well-known algorithm for point cloud registration is the ICP (Iterative Closest Point) that determines the rotation and translation that, when applied to one of the point clouds, places both point clouds optimally. The ICP algorithm iteratively executes two main steps: point correspondence determination and registration algorithm. The point correspondence determination is a module that, if not properly executed, can make the ICP converge to a local minimum. To overcome this drawback, two techniques were used. A meaningful set of 3D points using a technique known as SIFT (Scale-invariant feature transform) was obtained and an ICP that uses statistics to generate a dynamic distance and color threshold to the distance allowed between closest points was implemented. The reconstruction precision improvement was implemented using meaningful point clouds and the ICP to increase the number of points in the 3D space. The surface reconstruction is performed using marching cubes and filters to remove the noise and to smooth the surface. The factors that influence the 3D reconstruction precision are here discussed and analyzed. A detailed discussion of the number of frames used by the ICP and the ICP parameters is presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mechatronics.2015.10.014</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8495-2337</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4158 |
ispartof | Mechatronics (Oxford), 2016-05, Vol.35, p.11-22 |
issn | 0957-4158 1873-4006 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825445636 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Color Feature extraction Marching cubes Optimization Point registration Reconstruction Statistics Structured-light cameras Surface reconstruction Three dimensional models Transforms Translations |
title | 3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20reconstruction%20and%20multiple%20point%20cloud%20registration%20using%20a%20low%20precision%20RGB-D%20sensor&rft.jtitle=Mechatronics%20(Oxford)&rft.au=Takimoto,%20Rog%C3%A9rio%20Yugo&rft.date=2016-05&rft.volume=35&rft.spage=11&rft.epage=22&rft.pages=11-22&rft.issn=0957-4158&rft.eissn=1873-4006&rft_id=info:doi/10.1016/j.mechatronics.2015.10.014&rft_dat=%3Cproquest_cross%3E1825445636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825445636&rft_id=info:pmid/&rft_els_id=S0957415815001932&rfr_iscdi=true |