3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor

A 3D reconstruction method using feature points is presented and the parameters used to improve the reconstruction are discussed. The precision of the 3D reconstruction is improved by combining point clouds obtained from different viewpoints using structured light. A well-known algorithm for point c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechatronics (Oxford) 2016-05, Vol.35, p.11-22
Hauptverfasser: Takimoto, Rogério Yugo, Tsuzuki, Marcos de Sales Guerra, Vogelaar, Renato, Martins, Thiago de Castro, Sato, André Kubagawa, Iwao, Yuma, Gotoh, Toshiyuki, Kagei, Seiichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 11
container_title Mechatronics (Oxford)
container_volume 35
creator Takimoto, Rogério Yugo
Tsuzuki, Marcos de Sales Guerra
Vogelaar, Renato
Martins, Thiago de Castro
Sato, André Kubagawa
Iwao, Yuma
Gotoh, Toshiyuki
Kagei, Seiichiro
description A 3D reconstruction method using feature points is presented and the parameters used to improve the reconstruction are discussed. The precision of the 3D reconstruction is improved by combining point clouds obtained from different viewpoints using structured light. A well-known algorithm for point cloud registration is the ICP (Iterative Closest Point) that determines the rotation and translation that, when applied to one of the point clouds, places both point clouds optimally. The ICP algorithm iteratively executes two main steps: point correspondence determination and registration algorithm. The point correspondence determination is a module that, if not properly executed, can make the ICP converge to a local minimum. To overcome this drawback, two techniques were used. A meaningful set of 3D points using a technique known as SIFT (Scale-invariant feature transform) was obtained and an ICP that uses statistics to generate a dynamic distance and color threshold to the distance allowed between closest points was implemented. The reconstruction precision improvement was implemented using meaningful point clouds and the ICP to increase the number of points in the 3D space. The surface reconstruction is performed using marching cubes and filters to remove the noise and to smooth the surface. The factors that influence the 3D reconstruction precision are here discussed and analyzed. A detailed discussion of the number of frames used by the ICP and the ICP parameters is presented.
doi_str_mv 10.1016/j.mechatronics.2015.10.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825445636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957415815001932</els_id><sourcerecordid>1825445636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-f88584e7c2cda7b749dcfc0d0676918b68143e1569cb91591b8bf66595eb1db63</originalsourceid><addsrcrecordid>eNqNkE9LxDAUxIMouK5-h-DJS2vetvlTb7qrq7AgiF68hDZN1yxtUpNU8dvbuh48enrw5jcDMwidA0mBALvcpZ1Wb2X0zhoV0gUBOgopgfwAzUDwLMkJYYdoRgrKkxyoOEYnIewIAQ7AZ-g1W2GvlbMh-kFF4ywubY27oY2mbzXunbERq9YN9chtzYiVP9QQjN3iErfuE_djggnT92l9k6xw0DY4f4qOmrIN-uz3ztHL3e3z8j7ZPK4fltebRGWUx6QRgopcc7VQdckrnhe1ahSpCeOsAFExAXmmgbJCVQXQAipRNYzRguoK6oplc3Sxz-29ex90iLIzQem2La12Q5AgFjTPKcsm9GqPKu9C8LqRvTdd6b8kEDkNKnfy76ByGnTSxkFH82pv1mOZD6O9DMpoq3Rtxv5R1s78J-Yb642Gvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825445636</pqid></control><display><type>article</type><title>3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor</title><source>Elsevier ScienceDirect Journals</source><creator>Takimoto, Rogério Yugo ; Tsuzuki, Marcos de Sales Guerra ; Vogelaar, Renato ; Martins, Thiago de Castro ; Sato, André Kubagawa ; Iwao, Yuma ; Gotoh, Toshiyuki ; Kagei, Seiichiro</creator><creatorcontrib>Takimoto, Rogério Yugo ; Tsuzuki, Marcos de Sales Guerra ; Vogelaar, Renato ; Martins, Thiago de Castro ; Sato, André Kubagawa ; Iwao, Yuma ; Gotoh, Toshiyuki ; Kagei, Seiichiro</creatorcontrib><description>A 3D reconstruction method using feature points is presented and the parameters used to improve the reconstruction are discussed. The precision of the 3D reconstruction is improved by combining point clouds obtained from different viewpoints using structured light. A well-known algorithm for point cloud registration is the ICP (Iterative Closest Point) that determines the rotation and translation that, when applied to one of the point clouds, places both point clouds optimally. The ICP algorithm iteratively executes two main steps: point correspondence determination and registration algorithm. The point correspondence determination is a module that, if not properly executed, can make the ICP converge to a local minimum. To overcome this drawback, two techniques were used. A meaningful set of 3D points using a technique known as SIFT (Scale-invariant feature transform) was obtained and an ICP that uses statistics to generate a dynamic distance and color threshold to the distance allowed between closest points was implemented. The reconstruction precision improvement was implemented using meaningful point clouds and the ICP to increase the number of points in the 3D space. The surface reconstruction is performed using marching cubes and filters to remove the noise and to smooth the surface. The factors that influence the 3D reconstruction precision are here discussed and analyzed. A detailed discussion of the number of frames used by the ICP and the ICP parameters is presented.</description><identifier>ISSN: 0957-4158</identifier><identifier>EISSN: 1873-4006</identifier><identifier>DOI: 10.1016/j.mechatronics.2015.10.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Color ; Feature extraction ; Marching cubes ; Optimization ; Point registration ; Reconstruction ; Statistics ; Structured-light cameras ; Surface reconstruction ; Three dimensional models ; Transforms ; Translations</subject><ispartof>Mechatronics (Oxford), 2016-05, Vol.35, p.11-22</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-f88584e7c2cda7b749dcfc0d0676918b68143e1569cb91591b8bf66595eb1db63</citedby><cites>FETCH-LOGICAL-c357t-f88584e7c2cda7b749dcfc0d0676918b68143e1569cb91591b8bf66595eb1db63</cites><orcidid>0000-0002-8495-2337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957415815001932$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Takimoto, Rogério Yugo</creatorcontrib><creatorcontrib>Tsuzuki, Marcos de Sales Guerra</creatorcontrib><creatorcontrib>Vogelaar, Renato</creatorcontrib><creatorcontrib>Martins, Thiago de Castro</creatorcontrib><creatorcontrib>Sato, André Kubagawa</creatorcontrib><creatorcontrib>Iwao, Yuma</creatorcontrib><creatorcontrib>Gotoh, Toshiyuki</creatorcontrib><creatorcontrib>Kagei, Seiichiro</creatorcontrib><title>3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor</title><title>Mechatronics (Oxford)</title><description>A 3D reconstruction method using feature points is presented and the parameters used to improve the reconstruction are discussed. The precision of the 3D reconstruction is improved by combining point clouds obtained from different viewpoints using structured light. A well-known algorithm for point cloud registration is the ICP (Iterative Closest Point) that determines the rotation and translation that, when applied to one of the point clouds, places both point clouds optimally. The ICP algorithm iteratively executes two main steps: point correspondence determination and registration algorithm. The point correspondence determination is a module that, if not properly executed, can make the ICP converge to a local minimum. To overcome this drawback, two techniques were used. A meaningful set of 3D points using a technique known as SIFT (Scale-invariant feature transform) was obtained and an ICP that uses statistics to generate a dynamic distance and color threshold to the distance allowed between closest points was implemented. The reconstruction precision improvement was implemented using meaningful point clouds and the ICP to increase the number of points in the 3D space. The surface reconstruction is performed using marching cubes and filters to remove the noise and to smooth the surface. The factors that influence the 3D reconstruction precision are here discussed and analyzed. A detailed discussion of the number of frames used by the ICP and the ICP parameters is presented.</description><subject>Algorithms</subject><subject>Color</subject><subject>Feature extraction</subject><subject>Marching cubes</subject><subject>Optimization</subject><subject>Point registration</subject><subject>Reconstruction</subject><subject>Statistics</subject><subject>Structured-light cameras</subject><subject>Surface reconstruction</subject><subject>Three dimensional models</subject><subject>Transforms</subject><subject>Translations</subject><issn>0957-4158</issn><issn>1873-4006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAUxIMouK5-h-DJS2vetvlTb7qrq7AgiF68hDZN1yxtUpNU8dvbuh48enrw5jcDMwidA0mBALvcpZ1Wb2X0zhoV0gUBOgopgfwAzUDwLMkJYYdoRgrKkxyoOEYnIewIAQ7AZ-g1W2GvlbMh-kFF4ywubY27oY2mbzXunbERq9YN9chtzYiVP9QQjN3iErfuE_djggnT92l9k6xw0DY4f4qOmrIN-uz3ztHL3e3z8j7ZPK4fltebRGWUx6QRgopcc7VQdckrnhe1ahSpCeOsAFExAXmmgbJCVQXQAipRNYzRguoK6oplc3Sxz-29ex90iLIzQem2La12Q5AgFjTPKcsm9GqPKu9C8LqRvTdd6b8kEDkNKnfy76ByGnTSxkFH82pv1mOZD6O9DMpoq3Rtxv5R1s78J-Yb642Gvw</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Takimoto, Rogério Yugo</creator><creator>Tsuzuki, Marcos de Sales Guerra</creator><creator>Vogelaar, Renato</creator><creator>Martins, Thiago de Castro</creator><creator>Sato, André Kubagawa</creator><creator>Iwao, Yuma</creator><creator>Gotoh, Toshiyuki</creator><creator>Kagei, Seiichiro</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8495-2337</orcidid></search><sort><creationdate>201605</creationdate><title>3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor</title><author>Takimoto, Rogério Yugo ; Tsuzuki, Marcos de Sales Guerra ; Vogelaar, Renato ; Martins, Thiago de Castro ; Sato, André Kubagawa ; Iwao, Yuma ; Gotoh, Toshiyuki ; Kagei, Seiichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-f88584e7c2cda7b749dcfc0d0676918b68143e1569cb91591b8bf66595eb1db63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Feature extraction</topic><topic>Marching cubes</topic><topic>Optimization</topic><topic>Point registration</topic><topic>Reconstruction</topic><topic>Statistics</topic><topic>Structured-light cameras</topic><topic>Surface reconstruction</topic><topic>Three dimensional models</topic><topic>Transforms</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takimoto, Rogério Yugo</creatorcontrib><creatorcontrib>Tsuzuki, Marcos de Sales Guerra</creatorcontrib><creatorcontrib>Vogelaar, Renato</creatorcontrib><creatorcontrib>Martins, Thiago de Castro</creatorcontrib><creatorcontrib>Sato, André Kubagawa</creatorcontrib><creatorcontrib>Iwao, Yuma</creatorcontrib><creatorcontrib>Gotoh, Toshiyuki</creatorcontrib><creatorcontrib>Kagei, Seiichiro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechatronics (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takimoto, Rogério Yugo</au><au>Tsuzuki, Marcos de Sales Guerra</au><au>Vogelaar, Renato</au><au>Martins, Thiago de Castro</au><au>Sato, André Kubagawa</au><au>Iwao, Yuma</au><au>Gotoh, Toshiyuki</au><au>Kagei, Seiichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor</atitle><jtitle>Mechatronics (Oxford)</jtitle><date>2016-05</date><risdate>2016</risdate><volume>35</volume><spage>11</spage><epage>22</epage><pages>11-22</pages><issn>0957-4158</issn><eissn>1873-4006</eissn><abstract>A 3D reconstruction method using feature points is presented and the parameters used to improve the reconstruction are discussed. The precision of the 3D reconstruction is improved by combining point clouds obtained from different viewpoints using structured light. A well-known algorithm for point cloud registration is the ICP (Iterative Closest Point) that determines the rotation and translation that, when applied to one of the point clouds, places both point clouds optimally. The ICP algorithm iteratively executes two main steps: point correspondence determination and registration algorithm. The point correspondence determination is a module that, if not properly executed, can make the ICP converge to a local minimum. To overcome this drawback, two techniques were used. A meaningful set of 3D points using a technique known as SIFT (Scale-invariant feature transform) was obtained and an ICP that uses statistics to generate a dynamic distance and color threshold to the distance allowed between closest points was implemented. The reconstruction precision improvement was implemented using meaningful point clouds and the ICP to increase the number of points in the 3D space. The surface reconstruction is performed using marching cubes and filters to remove the noise and to smooth the surface. The factors that influence the 3D reconstruction precision are here discussed and analyzed. A detailed discussion of the number of frames used by the ICP and the ICP parameters is presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mechatronics.2015.10.014</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8495-2337</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4158
ispartof Mechatronics (Oxford), 2016-05, Vol.35, p.11-22
issn 0957-4158
1873-4006
language eng
recordid cdi_proquest_miscellaneous_1825445636
source Elsevier ScienceDirect Journals
subjects Algorithms
Color
Feature extraction
Marching cubes
Optimization
Point registration
Reconstruction
Statistics
Structured-light cameras
Surface reconstruction
Three dimensional models
Transforms
Translations
title 3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20reconstruction%20and%20multiple%20point%20cloud%20registration%20using%20a%20low%20precision%20RGB-D%20sensor&rft.jtitle=Mechatronics%20(Oxford)&rft.au=Takimoto,%20Rog%C3%A9rio%20Yugo&rft.date=2016-05&rft.volume=35&rft.spage=11&rft.epage=22&rft.pages=11-22&rft.issn=0957-4158&rft.eissn=1873-4006&rft_id=info:doi/10.1016/j.mechatronics.2015.10.014&rft_dat=%3Cproquest_cross%3E1825445636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825445636&rft_id=info:pmid/&rft_els_id=S0957415815001932&rfr_iscdi=true