Stability and Electronic Properties of Hydrogenated Zigzag Carbon Nanotube Focused on Stone-Wales Defect

We present a first-principles study of the chemisorption of hydrogen on a Stone-Wales (SW) defective carbon nanotube (10,0). The investigated configurations include four configurations covering single defects and double defects. One hydrogen dimer adsorption is energetically favored on bonds shared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics letters 2015-03, Vol.32 (3), p.82-86
1. Verfasser: 潘立军 张洁 陈卫光 唐亚楠
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a first-principles study of the chemisorption of hydrogen on a Stone-Wales (SW) defective carbon nanotube (10,0). The investigated configurations include four configurations covering single defects and double defects. One hydrogen dimer adsorption is energetically favored on bonds shared by carbon heptagon-heptagon for configurations with the defect parallel to the tube axis compared with the carbon pentagon-hexagon sites for ones with a slanted defect. This different behavior is also demonstrated for hydrogen dimer chain adsorption, the favored site for the former ones is through the defect, which is the nearest neighbor site to defect for the latter ones. It is found that the energy band gaps of hydrogenated configurations may be enlarged or decreased by altering the adsorption site or defect position. The semiconductor-to-metal transition may occur for configurations with the defect or defects parallel to the tube axis due to low electronic localization. Our results highlight the interest of the interaction of multi-factor system by providing a detailed bond and position picture of a hydrogenated defective carbon nanotube (10,0).
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/32/3/036101