Ab initio study of hydrogen on beryllium surfaces
Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (typ...
Gespeichert in:
Veröffentlicht in: | Surface science 2015-11, Vol.641, p.198-203 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | |
container_start_page | 198 |
container_title | Surface science |
container_volume | 641 |
creator | Bachurin, D.V. Vladimirov, P.V. |
description | Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy.
[Display omitted]
•Static ab initio calculations for five principle hcp Be surfaces were performed.•The surface energies of five principle hcp Be surfaces were calculated.•Up to five outermost atomic layers are involved in surface relaxation.•In almost all cases, hydrogen adsorbed on Be surface reduced its energy.•Stable adsorption sites for single hydrogen atom on all surfaces were found. |
doi_str_mv | 10.1016/j.susc.2015.07.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825444203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602815002009</els_id><sourcerecordid>1825444203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-9cd45a642674bf7d7caabf30291e607539625de4de2360031693ecacfab2b1213</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gysiScP2InEktV8SVVYoHZcuwLuErjYidI-fekCjO33PI-r-4eQm4pFBSovN8XaUy2YEDLAlQBUJ2RFa1UnTNVVudkBcDrXAKrLslVSnuYR9TlitBNk_neDz5kaRjdlIU2-5pcDJ_YZ6HPGoxT1_nxkKUxtsZiuiYXrekS3vztNfl4enzfvuS7t-fX7WaXW875kNfWidJIwaQSTaucssY0LQdWU5SgSl5LVjoUDhmX83VU1hytsa1pWEMZ5Wtyt_QeY_geMQ364JPFrjM9hjFpWrFSCMGAz1G2RG0MKUVs9TH6g4mTpqBPfvRen_zokx8NSs9-ZuhhgXB-4sdj1Ml67C06H9EO2gX_H_4LFS5tzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825444203</pqid></control><display><type>article</type><title>Ab initio study of hydrogen on beryllium surfaces</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bachurin, D.V. ; Vladimirov, P.V.</creator><creatorcontrib>Bachurin, D.V. ; Vladimirov, P.V.</creatorcontrib><description>Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy.
[Display omitted]
•Static ab initio calculations for five principle hcp Be surfaces were performed.•The surface energies of five principle hcp Be surfaces were calculated.•Up to five outermost atomic layers are involved in surface relaxation.•In almost all cases, hydrogen adsorbed on Be surface reduced its energy.•Stable adsorption sites for single hydrogen atom on all surfaces were found.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2015.07.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ab initio calculations ; Basal plane ; Beryllium ; Hydrogen ; Interlayers ; Interplanar relaxation ; Mathematical analysis ; Planes ; Reduction ; Surface energy</subject><ispartof>Surface science, 2015-11, Vol.641, p.198-203</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-9cd45a642674bf7d7caabf30291e607539625de4de2360031693ecacfab2b1213</citedby><cites>FETCH-LOGICAL-c333t-9cd45a642674bf7d7caabf30291e607539625de4de2360031693ecacfab2b1213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.susc.2015.07.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bachurin, D.V.</creatorcontrib><creatorcontrib>Vladimirov, P.V.</creatorcontrib><title>Ab initio study of hydrogen on beryllium surfaces</title><title>Surface science</title><description>Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy.
[Display omitted]
•Static ab initio calculations for five principle hcp Be surfaces were performed.•The surface energies of five principle hcp Be surfaces were calculated.•Up to five outermost atomic layers are involved in surface relaxation.•In almost all cases, hydrogen adsorbed on Be surface reduced its energy.•Stable adsorption sites for single hydrogen atom on all surfaces were found.</description><subject>Ab initio calculations</subject><subject>Basal plane</subject><subject>Beryllium</subject><subject>Hydrogen</subject><subject>Interlayers</subject><subject>Interplanar relaxation</subject><subject>Mathematical analysis</subject><subject>Planes</subject><subject>Reduction</subject><subject>Surface energy</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gysiScP2InEktV8SVVYoHZcuwLuErjYidI-fekCjO33PI-r-4eQm4pFBSovN8XaUy2YEDLAlQBUJ2RFa1UnTNVVudkBcDrXAKrLslVSnuYR9TlitBNk_neDz5kaRjdlIU2-5pcDJ_YZ6HPGoxT1_nxkKUxtsZiuiYXrekS3vztNfl4enzfvuS7t-fX7WaXW875kNfWidJIwaQSTaucssY0LQdWU5SgSl5LVjoUDhmX83VU1hytsa1pWEMZ5Wtyt_QeY_geMQ364JPFrjM9hjFpWrFSCMGAz1G2RG0MKUVs9TH6g4mTpqBPfvRen_zokx8NSs9-ZuhhgXB-4sdj1Ml67C06H9EO2gX_H_4LFS5tzA</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Bachurin, D.V.</creator><creator>Vladimirov, P.V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151101</creationdate><title>Ab initio study of hydrogen on beryllium surfaces</title><author>Bachurin, D.V. ; Vladimirov, P.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-9cd45a642674bf7d7caabf30291e607539625de4de2360031693ecacfab2b1213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ab initio calculations</topic><topic>Basal plane</topic><topic>Beryllium</topic><topic>Hydrogen</topic><topic>Interlayers</topic><topic>Interplanar relaxation</topic><topic>Mathematical analysis</topic><topic>Planes</topic><topic>Reduction</topic><topic>Surface energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachurin, D.V.</creatorcontrib><creatorcontrib>Vladimirov, P.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachurin, D.V.</au><au>Vladimirov, P.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio study of hydrogen on beryllium surfaces</atitle><jtitle>Surface science</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>641</volume><spage>198</spage><epage>203</epage><pages>198-203</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><abstract>Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy.
[Display omitted]
•Static ab initio calculations for five principle hcp Be surfaces were performed.•The surface energies of five principle hcp Be surfaces were calculated.•Up to five outermost atomic layers are involved in surface relaxation.•In almost all cases, hydrogen adsorbed on Be surface reduced its energy.•Stable adsorption sites for single hydrogen atom on all surfaces were found.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2015.07.008</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-6028 |
ispartof | Surface science, 2015-11, Vol.641, p.198-203 |
issn | 0039-6028 1879-2758 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825444203 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Ab initio calculations Basal plane Beryllium Hydrogen Interlayers Interplanar relaxation Mathematical analysis Planes Reduction Surface energy |
title | Ab initio study of hydrogen on beryllium surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20study%20of%20hydrogen%20on%20beryllium%20surfaces&rft.jtitle=Surface%20science&rft.au=Bachurin,%20D.V.&rft.date=2015-11-01&rft.volume=641&rft.spage=198&rft.epage=203&rft.pages=198-203&rft.issn=0039-6028&rft.eissn=1879-2758&rft_id=info:doi/10.1016/j.susc.2015.07.008&rft_dat=%3Cproquest_cross%3E1825444203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825444203&rft_id=info:pmid/&rft_els_id=S0039602815002009&rfr_iscdi=true |