Ab initio study of hydrogen on beryllium surfaces

Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2015-11, Vol.641, p.198-203
Hauptverfasser: Bachurin, D.V., Vladimirov, P.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue
container_start_page 198
container_title Surface science
container_volume 641
creator Bachurin, D.V.
Vladimirov, P.V.
description Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy. [Display omitted] •Static ab initio calculations for five principle hcp Be surfaces were performed.•The surface energies of five principle hcp Be surfaces were calculated.•Up to five outermost atomic layers are involved in surface relaxation.•In almost all cases, hydrogen adsorbed on Be surface reduced its energy.•Stable adsorption sites for single hydrogen atom on all surfaces were found.
doi_str_mv 10.1016/j.susc.2015.07.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825444203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602815002009</els_id><sourcerecordid>1825444203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-9cd45a642674bf7d7caabf30291e607539625de4de2360031693ecacfab2b1213</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gysiScP2InEktV8SVVYoHZcuwLuErjYidI-fekCjO33PI-r-4eQm4pFBSovN8XaUy2YEDLAlQBUJ2RFa1UnTNVVudkBcDrXAKrLslVSnuYR9TlitBNk_neDz5kaRjdlIU2-5pcDJ_YZ6HPGoxT1_nxkKUxtsZiuiYXrekS3vztNfl4enzfvuS7t-fX7WaXW875kNfWidJIwaQSTaucssY0LQdWU5SgSl5LVjoUDhmX83VU1hytsa1pWEMZ5Wtyt_QeY_geMQ364JPFrjM9hjFpWrFSCMGAz1G2RG0MKUVs9TH6g4mTpqBPfvRen_zokx8NSs9-ZuhhgXB-4sdj1Ml67C06H9EO2gX_H_4LFS5tzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825444203</pqid></control><display><type>article</type><title>Ab initio study of hydrogen on beryllium surfaces</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bachurin, D.V. ; Vladimirov, P.V.</creator><creatorcontrib>Bachurin, D.V. ; Vladimirov, P.V.</creatorcontrib><description>Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy. [Display omitted] •Static ab initio calculations for five principle hcp Be surfaces were performed.•The surface energies of five principle hcp Be surfaces were calculated.•Up to five outermost atomic layers are involved in surface relaxation.•In almost all cases, hydrogen adsorbed on Be surface reduced its energy.•Stable adsorption sites for single hydrogen atom on all surfaces were found.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2015.07.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ab initio calculations ; Basal plane ; Beryllium ; Hydrogen ; Interlayers ; Interplanar relaxation ; Mathematical analysis ; Planes ; Reduction ; Surface energy</subject><ispartof>Surface science, 2015-11, Vol.641, p.198-203</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-9cd45a642674bf7d7caabf30291e607539625de4de2360031693ecacfab2b1213</citedby><cites>FETCH-LOGICAL-c333t-9cd45a642674bf7d7caabf30291e607539625de4de2360031693ecacfab2b1213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.susc.2015.07.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bachurin, D.V.</creatorcontrib><creatorcontrib>Vladimirov, P.V.</creatorcontrib><title>Ab initio study of hydrogen on beryllium surfaces</title><title>Surface science</title><description>Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy. [Display omitted] •Static ab initio calculations for five principle hcp Be surfaces were performed.•The surface energies of five principle hcp Be surfaces were calculated.•Up to five outermost atomic layers are involved in surface relaxation.•In almost all cases, hydrogen adsorbed on Be surface reduced its energy.•Stable adsorption sites for single hydrogen atom on all surfaces were found.</description><subject>Ab initio calculations</subject><subject>Basal plane</subject><subject>Beryllium</subject><subject>Hydrogen</subject><subject>Interlayers</subject><subject>Interplanar relaxation</subject><subject>Mathematical analysis</subject><subject>Planes</subject><subject>Reduction</subject><subject>Surface energy</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gysiScP2InEktV8SVVYoHZcuwLuErjYidI-fekCjO33PI-r-4eQm4pFBSovN8XaUy2YEDLAlQBUJ2RFa1UnTNVVudkBcDrXAKrLslVSnuYR9TlitBNk_neDz5kaRjdlIU2-5pcDJ_YZ6HPGoxT1_nxkKUxtsZiuiYXrekS3vztNfl4enzfvuS7t-fX7WaXW875kNfWidJIwaQSTaucssY0LQdWU5SgSl5LVjoUDhmX83VU1hytsa1pWEMZ5Wtyt_QeY_geMQ364JPFrjM9hjFpWrFSCMGAz1G2RG0MKUVs9TH6g4mTpqBPfvRen_zokx8NSs9-ZuhhgXB-4sdj1Ml67C06H9EO2gX_H_4LFS5tzA</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Bachurin, D.V.</creator><creator>Vladimirov, P.V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151101</creationdate><title>Ab initio study of hydrogen on beryllium surfaces</title><author>Bachurin, D.V. ; Vladimirov, P.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-9cd45a642674bf7d7caabf30291e607539625de4de2360031693ecacfab2b1213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ab initio calculations</topic><topic>Basal plane</topic><topic>Beryllium</topic><topic>Hydrogen</topic><topic>Interlayers</topic><topic>Interplanar relaxation</topic><topic>Mathematical analysis</topic><topic>Planes</topic><topic>Reduction</topic><topic>Surface energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachurin, D.V.</creatorcontrib><creatorcontrib>Vladimirov, P.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachurin, D.V.</au><au>Vladimirov, P.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio study of hydrogen on beryllium surfaces</atitle><jtitle>Surface science</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>641</volume><spage>198</spage><epage>203</epage><pages>198-203</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><abstract>Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy. [Display omitted] •Static ab initio calculations for five principle hcp Be surfaces were performed.•The surface energies of five principle hcp Be surfaces were calculated.•Up to five outermost atomic layers are involved in surface relaxation.•In almost all cases, hydrogen adsorbed on Be surface reduced its energy.•Stable adsorption sites for single hydrogen atom on all surfaces were found.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2015.07.008</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2015-11, Vol.641, p.198-203
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_miscellaneous_1825444203
source Elsevier ScienceDirect Journals Complete
subjects Ab initio calculations
Basal plane
Beryllium
Hydrogen
Interlayers
Interplanar relaxation
Mathematical analysis
Planes
Reduction
Surface energy
title Ab initio study of hydrogen on beryllium surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20study%20of%20hydrogen%20on%20beryllium%20surfaces&rft.jtitle=Surface%20science&rft.au=Bachurin,%20D.V.&rft.date=2015-11-01&rft.volume=641&rft.spage=198&rft.epage=203&rft.pages=198-203&rft.issn=0039-6028&rft.eissn=1879-2758&rft_id=info:doi/10.1016/j.susc.2015.07.008&rft_dat=%3Cproquest_cross%3E1825444203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825444203&rft_id=info:pmid/&rft_els_id=S0039602815002009&rfr_iscdi=true