Hardware design and implementation of a novel ANN-based chaotic generator in FPGA
This paper presents a novel hardware implementation of Artificial Neural Networks (ANNs) for modeling of the Pehlivan–Uyaroglu Chaotic System (PUCS) on Field Programmable Gate Array (FPGA). There are two main parts in the proposed work. In the first part, a 3-8-3 Feed Forward Neural Network (FFNN) h...
Gespeichert in:
Veröffentlicht in: | Optik (Stuttgart) 2016-07, Vol.127 (13), p.5500-5505 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5505 |
---|---|
container_issue | 13 |
container_start_page | 5500 |
container_title | Optik (Stuttgart) |
container_volume | 127 |
creator | Alcina, Murat Pehlivanb, Ihsan Koyuncuc, Ismail |
description | This paper presents a novel hardware implementation of Artificial Neural Networks (ANNs) for modeling of the Pehlivan–Uyaroglu Chaotic System (PUCS) on Field Programmable Gate Array (FPGA). There are two main parts in the proposed work. In the first part, a 3-8-3 Feed Forward Neural Network (FFNN) has been created using Matlab R2015a. The training results show that FFNN trained with back propagation algorithm exhibits satisfactory precision for the direct implementation. In the second part, the hardware implementation of the trained network has been carried out. The designed architecture is presented using Very High Speed Integrated Circuits Hardware Description Language (VHDL) and is implemented on a Xilinx Virtex 6 (XC6VCX240T) chip. All related parameters are defined with IEEE 754 single precision floating point number format. For the approximation of Log-Sigmoid transfer function, Xilinx's COordinate Rotation DIgital Computer (CORDIC) design has been employed. The design can be used with a clock frequency up to 266.429MHz. Finally, chip statistics of FPGA and analysis results have been presented. The proposed work have showed that chaotic systems can be successfully modeled using ANNs on FPGA. In future, chaos-based engineering applications can be performed using ANN-based chaotic oscillators on FPGA. |
doi_str_mv | 10.1016/j.ijleo.2016.03.042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825444139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030402616302108</els_id><sourcerecordid>1825444139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b64933aea28bab625cce4972c97207ddf3f38abde2c28ef07144d01ef6edfb283</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKu_wEuOXnadfHR3e_BQim2FUhX0HLLJbE3ZJjXZVvz3bq1nD8Mw8D7DzEPILYOcASvuN7nbtBhy3g85iBwkPyMDVrAqY0IU52QAICCTwItLcpXSBgDKEsoBeV3oaL90RGoxubWn2lvqtrsWt-g73bngaWiopj4csKWT1SqrdUJLzYcOnTN0jR6j7kKkztPZy3xyTS4a3Sa8-etD8j57fJsusuXz_Gk6WWamv6jL6kKOhdCoeVXruuAjY1COS276gtLaRjSi0rVFbniFDZRMSgsMmwJtU_NKDMndae8uhs89pk5tXTLYttpj2CfFKj6SUjIx7qPiFDUxpBSxUbvotjp-KwbqKFBt1K9AdRSoQKheYE89nCjsvzg4jCoZh96gdRFNp2xw__I_y8t6YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825444139</pqid></control><display><type>article</type><title>Hardware design and implementation of a novel ANN-based chaotic generator in FPGA</title><source>Elsevier ScienceDirect Journals</source><creator>Alcina, Murat ; Pehlivanb, Ihsan ; Koyuncuc, Ismail</creator><creatorcontrib>Alcina, Murat ; Pehlivanb, Ihsan ; Koyuncuc, Ismail</creatorcontrib><description>This paper presents a novel hardware implementation of Artificial Neural Networks (ANNs) for modeling of the Pehlivan–Uyaroglu Chaotic System (PUCS) on Field Programmable Gate Array (FPGA). There are two main parts in the proposed work. In the first part, a 3-8-3 Feed Forward Neural Network (FFNN) has been created using Matlab R2015a. The training results show that FFNN trained with back propagation algorithm exhibits satisfactory precision for the direct implementation. In the second part, the hardware implementation of the trained network has been carried out. The designed architecture is presented using Very High Speed Integrated Circuits Hardware Description Language (VHDL) and is implemented on a Xilinx Virtex 6 (XC6VCX240T) chip. All related parameters are defined with IEEE 754 single precision floating point number format. For the approximation of Log-Sigmoid transfer function, Xilinx's COordinate Rotation DIgital Computer (CORDIC) design has been employed. The design can be used with a clock frequency up to 266.429MHz. Finally, chip statistics of FPGA and analysis results have been presented. The proposed work have showed that chaotic systems can be successfully modeled using ANNs on FPGA. In future, chaos-based engineering applications can be performed using ANN-based chaotic oscillators on FPGA.</description><identifier>ISSN: 0030-4026</identifier><identifier>EISSN: 1618-1336</identifier><identifier>DOI: 10.1016/j.ijleo.2016.03.042</identifier><language>eng</language><publisher>Elsevier GmbH</publisher><subject>Artificial Neural Networks ; Chaos theory ; Chaotic systems ; Chips ; Design analysis ; Design engineering ; Field Programmable Gate Arrays ; Hardware ; Mathematical models ; Matlab ; VHDL</subject><ispartof>Optik (Stuttgart), 2016-07, Vol.127 (13), p.5500-5505</ispartof><rights>2016 Elsevier GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-b64933aea28bab625cce4972c97207ddf3f38abde2c28ef07144d01ef6edfb283</citedby><cites>FETCH-LOGICAL-c336t-b64933aea28bab625cce4972c97207ddf3f38abde2c28ef07144d01ef6edfb283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0030402616302108$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Alcina, Murat</creatorcontrib><creatorcontrib>Pehlivanb, Ihsan</creatorcontrib><creatorcontrib>Koyuncuc, Ismail</creatorcontrib><title>Hardware design and implementation of a novel ANN-based chaotic generator in FPGA</title><title>Optik (Stuttgart)</title><description>This paper presents a novel hardware implementation of Artificial Neural Networks (ANNs) for modeling of the Pehlivan–Uyaroglu Chaotic System (PUCS) on Field Programmable Gate Array (FPGA). There are two main parts in the proposed work. In the first part, a 3-8-3 Feed Forward Neural Network (FFNN) has been created using Matlab R2015a. The training results show that FFNN trained with back propagation algorithm exhibits satisfactory precision for the direct implementation. In the second part, the hardware implementation of the trained network has been carried out. The designed architecture is presented using Very High Speed Integrated Circuits Hardware Description Language (VHDL) and is implemented on a Xilinx Virtex 6 (XC6VCX240T) chip. All related parameters are defined with IEEE 754 single precision floating point number format. For the approximation of Log-Sigmoid transfer function, Xilinx's COordinate Rotation DIgital Computer (CORDIC) design has been employed. The design can be used with a clock frequency up to 266.429MHz. Finally, chip statistics of FPGA and analysis results have been presented. The proposed work have showed that chaotic systems can be successfully modeled using ANNs on FPGA. In future, chaos-based engineering applications can be performed using ANN-based chaotic oscillators on FPGA.</description><subject>Artificial Neural Networks</subject><subject>Chaos theory</subject><subject>Chaotic systems</subject><subject>Chips</subject><subject>Design analysis</subject><subject>Design engineering</subject><subject>Field Programmable Gate Arrays</subject><subject>Hardware</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>VHDL</subject><issn>0030-4026</issn><issn>1618-1336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKu_wEuOXnadfHR3e_BQim2FUhX0HLLJbE3ZJjXZVvz3bq1nD8Mw8D7DzEPILYOcASvuN7nbtBhy3g85iBwkPyMDVrAqY0IU52QAICCTwItLcpXSBgDKEsoBeV3oaL90RGoxubWn2lvqtrsWt-g73bngaWiopj4csKWT1SqrdUJLzYcOnTN0jR6j7kKkztPZy3xyTS4a3Sa8-etD8j57fJsusuXz_Gk6WWamv6jL6kKOhdCoeVXruuAjY1COS276gtLaRjSi0rVFbniFDZRMSgsMmwJtU_NKDMndae8uhs89pk5tXTLYttpj2CfFKj6SUjIx7qPiFDUxpBSxUbvotjp-KwbqKFBt1K9AdRSoQKheYE89nCjsvzg4jCoZh96gdRFNp2xw__I_y8t6YQ</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Alcina, Murat</creator><creator>Pehlivanb, Ihsan</creator><creator>Koyuncuc, Ismail</creator><general>Elsevier GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Hardware design and implementation of a novel ANN-based chaotic generator in FPGA</title><author>Alcina, Murat ; Pehlivanb, Ihsan ; Koyuncuc, Ismail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b64933aea28bab625cce4972c97207ddf3f38abde2c28ef07144d01ef6edfb283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial Neural Networks</topic><topic>Chaos theory</topic><topic>Chaotic systems</topic><topic>Chips</topic><topic>Design analysis</topic><topic>Design engineering</topic><topic>Field Programmable Gate Arrays</topic><topic>Hardware</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>VHDL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alcina, Murat</creatorcontrib><creatorcontrib>Pehlivanb, Ihsan</creatorcontrib><creatorcontrib>Koyuncuc, Ismail</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optik (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alcina, Murat</au><au>Pehlivanb, Ihsan</au><au>Koyuncuc, Ismail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware design and implementation of a novel ANN-based chaotic generator in FPGA</atitle><jtitle>Optik (Stuttgart)</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>127</volume><issue>13</issue><spage>5500</spage><epage>5505</epage><pages>5500-5505</pages><issn>0030-4026</issn><eissn>1618-1336</eissn><abstract>This paper presents a novel hardware implementation of Artificial Neural Networks (ANNs) for modeling of the Pehlivan–Uyaroglu Chaotic System (PUCS) on Field Programmable Gate Array (FPGA). There are two main parts in the proposed work. In the first part, a 3-8-3 Feed Forward Neural Network (FFNN) has been created using Matlab R2015a. The training results show that FFNN trained with back propagation algorithm exhibits satisfactory precision for the direct implementation. In the second part, the hardware implementation of the trained network has been carried out. The designed architecture is presented using Very High Speed Integrated Circuits Hardware Description Language (VHDL) and is implemented on a Xilinx Virtex 6 (XC6VCX240T) chip. All related parameters are defined with IEEE 754 single precision floating point number format. For the approximation of Log-Sigmoid transfer function, Xilinx's COordinate Rotation DIgital Computer (CORDIC) design has been employed. The design can be used with a clock frequency up to 266.429MHz. Finally, chip statistics of FPGA and analysis results have been presented. The proposed work have showed that chaotic systems can be successfully modeled using ANNs on FPGA. In future, chaos-based engineering applications can be performed using ANN-based chaotic oscillators on FPGA.</abstract><pub>Elsevier GmbH</pub><doi>10.1016/j.ijleo.2016.03.042</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-4026 |
ispartof | Optik (Stuttgart), 2016-07, Vol.127 (13), p.5500-5505 |
issn | 0030-4026 1618-1336 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825444139 |
source | Elsevier ScienceDirect Journals |
subjects | Artificial Neural Networks Chaos theory Chaotic systems Chips Design analysis Design engineering Field Programmable Gate Arrays Hardware Mathematical models Matlab VHDL |
title | Hardware design and implementation of a novel ANN-based chaotic generator in FPGA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware%20design%20and%20implementation%20of%20a%20novel%20ANN-based%20chaotic%20generator%20in%20FPGA&rft.jtitle=Optik%20(Stuttgart)&rft.au=Alcina,%20Murat&rft.date=2016-07-01&rft.volume=127&rft.issue=13&rft.spage=5500&rft.epage=5505&rft.pages=5500-5505&rft.issn=0030-4026&rft.eissn=1618-1336&rft_id=info:doi/10.1016/j.ijleo.2016.03.042&rft_dat=%3Cproquest_cross%3E1825444139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825444139&rft_id=info:pmid/&rft_els_id=S0030402616302108&rfr_iscdi=true |