Hardware design and implementation of a novel ANN-based chaotic generator in FPGA

This paper presents a novel hardware implementation of Artificial Neural Networks (ANNs) for modeling of the Pehlivan–Uyaroglu Chaotic System (PUCS) on Field Programmable Gate Array (FPGA). There are two main parts in the proposed work. In the first part, a 3-8-3 Feed Forward Neural Network (FFNN) h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optik (Stuttgart) 2016-07, Vol.127 (13), p.5500-5505
Hauptverfasser: Alcina, Murat, Pehlivanb, Ihsan, Koyuncuc, Ismail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5505
container_issue 13
container_start_page 5500
container_title Optik (Stuttgart)
container_volume 127
creator Alcina, Murat
Pehlivanb, Ihsan
Koyuncuc, Ismail
description This paper presents a novel hardware implementation of Artificial Neural Networks (ANNs) for modeling of the Pehlivan–Uyaroglu Chaotic System (PUCS) on Field Programmable Gate Array (FPGA). There are two main parts in the proposed work. In the first part, a 3-8-3 Feed Forward Neural Network (FFNN) has been created using Matlab R2015a. The training results show that FFNN trained with back propagation algorithm exhibits satisfactory precision for the direct implementation. In the second part, the hardware implementation of the trained network has been carried out. The designed architecture is presented using Very High Speed Integrated Circuits Hardware Description Language (VHDL) and is implemented on a Xilinx Virtex 6 (XC6VCX240T) chip. All related parameters are defined with IEEE 754 single precision floating point number format. For the approximation of Log-Sigmoid transfer function, Xilinx's COordinate Rotation DIgital Computer (CORDIC) design has been employed. The design can be used with a clock frequency up to 266.429MHz. Finally, chip statistics of FPGA and analysis results have been presented. The proposed work have showed that chaotic systems can be successfully modeled using ANNs on FPGA. In future, chaos-based engineering applications can be performed using ANN-based chaotic oscillators on FPGA.
doi_str_mv 10.1016/j.ijleo.2016.03.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825444139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030402616302108</els_id><sourcerecordid>1825444139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b64933aea28bab625cce4972c97207ddf3f38abde2c28ef07144d01ef6edfb283</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKu_wEuOXnadfHR3e_BQim2FUhX0HLLJbE3ZJjXZVvz3bq1nD8Mw8D7DzEPILYOcASvuN7nbtBhy3g85iBwkPyMDVrAqY0IU52QAICCTwItLcpXSBgDKEsoBeV3oaL90RGoxubWn2lvqtrsWt-g73bngaWiopj4csKWT1SqrdUJLzYcOnTN0jR6j7kKkztPZy3xyTS4a3Sa8-etD8j57fJsusuXz_Gk6WWamv6jL6kKOhdCoeVXruuAjY1COS276gtLaRjSi0rVFbniFDZRMSgsMmwJtU_NKDMndae8uhs89pk5tXTLYttpj2CfFKj6SUjIx7qPiFDUxpBSxUbvotjp-KwbqKFBt1K9AdRSoQKheYE89nCjsvzg4jCoZh96gdRFNp2xw__I_y8t6YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825444139</pqid></control><display><type>article</type><title>Hardware design and implementation of a novel ANN-based chaotic generator in FPGA</title><source>Elsevier ScienceDirect Journals</source><creator>Alcina, Murat ; Pehlivanb, Ihsan ; Koyuncuc, Ismail</creator><creatorcontrib>Alcina, Murat ; Pehlivanb, Ihsan ; Koyuncuc, Ismail</creatorcontrib><description>This paper presents a novel hardware implementation of Artificial Neural Networks (ANNs) for modeling of the Pehlivan–Uyaroglu Chaotic System (PUCS) on Field Programmable Gate Array (FPGA). There are two main parts in the proposed work. In the first part, a 3-8-3 Feed Forward Neural Network (FFNN) has been created using Matlab R2015a. The training results show that FFNN trained with back propagation algorithm exhibits satisfactory precision for the direct implementation. In the second part, the hardware implementation of the trained network has been carried out. The designed architecture is presented using Very High Speed Integrated Circuits Hardware Description Language (VHDL) and is implemented on a Xilinx Virtex 6 (XC6VCX240T) chip. All related parameters are defined with IEEE 754 single precision floating point number format. For the approximation of Log-Sigmoid transfer function, Xilinx's COordinate Rotation DIgital Computer (CORDIC) design has been employed. The design can be used with a clock frequency up to 266.429MHz. Finally, chip statistics of FPGA and analysis results have been presented. The proposed work have showed that chaotic systems can be successfully modeled using ANNs on FPGA. In future, chaos-based engineering applications can be performed using ANN-based chaotic oscillators on FPGA.</description><identifier>ISSN: 0030-4026</identifier><identifier>EISSN: 1618-1336</identifier><identifier>DOI: 10.1016/j.ijleo.2016.03.042</identifier><language>eng</language><publisher>Elsevier GmbH</publisher><subject>Artificial Neural Networks ; Chaos theory ; Chaotic systems ; Chips ; Design analysis ; Design engineering ; Field Programmable Gate Arrays ; Hardware ; Mathematical models ; Matlab ; VHDL</subject><ispartof>Optik (Stuttgart), 2016-07, Vol.127 (13), p.5500-5505</ispartof><rights>2016 Elsevier GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-b64933aea28bab625cce4972c97207ddf3f38abde2c28ef07144d01ef6edfb283</citedby><cites>FETCH-LOGICAL-c336t-b64933aea28bab625cce4972c97207ddf3f38abde2c28ef07144d01ef6edfb283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0030402616302108$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Alcina, Murat</creatorcontrib><creatorcontrib>Pehlivanb, Ihsan</creatorcontrib><creatorcontrib>Koyuncuc, Ismail</creatorcontrib><title>Hardware design and implementation of a novel ANN-based chaotic generator in FPGA</title><title>Optik (Stuttgart)</title><description>This paper presents a novel hardware implementation of Artificial Neural Networks (ANNs) for modeling of the Pehlivan–Uyaroglu Chaotic System (PUCS) on Field Programmable Gate Array (FPGA). There are two main parts in the proposed work. In the first part, a 3-8-3 Feed Forward Neural Network (FFNN) has been created using Matlab R2015a. The training results show that FFNN trained with back propagation algorithm exhibits satisfactory precision for the direct implementation. In the second part, the hardware implementation of the trained network has been carried out. The designed architecture is presented using Very High Speed Integrated Circuits Hardware Description Language (VHDL) and is implemented on a Xilinx Virtex 6 (XC6VCX240T) chip. All related parameters are defined with IEEE 754 single precision floating point number format. For the approximation of Log-Sigmoid transfer function, Xilinx's COordinate Rotation DIgital Computer (CORDIC) design has been employed. The design can be used with a clock frequency up to 266.429MHz. Finally, chip statistics of FPGA and analysis results have been presented. The proposed work have showed that chaotic systems can be successfully modeled using ANNs on FPGA. In future, chaos-based engineering applications can be performed using ANN-based chaotic oscillators on FPGA.</description><subject>Artificial Neural Networks</subject><subject>Chaos theory</subject><subject>Chaotic systems</subject><subject>Chips</subject><subject>Design analysis</subject><subject>Design engineering</subject><subject>Field Programmable Gate Arrays</subject><subject>Hardware</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>VHDL</subject><issn>0030-4026</issn><issn>1618-1336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKu_wEuOXnadfHR3e_BQim2FUhX0HLLJbE3ZJjXZVvz3bq1nD8Mw8D7DzEPILYOcASvuN7nbtBhy3g85iBwkPyMDVrAqY0IU52QAICCTwItLcpXSBgDKEsoBeV3oaL90RGoxubWn2lvqtrsWt-g73bngaWiopj4csKWT1SqrdUJLzYcOnTN0jR6j7kKkztPZy3xyTS4a3Sa8-etD8j57fJsusuXz_Gk6WWamv6jL6kKOhdCoeVXruuAjY1COS276gtLaRjSi0rVFbniFDZRMSgsMmwJtU_NKDMndae8uhs89pk5tXTLYttpj2CfFKj6SUjIx7qPiFDUxpBSxUbvotjp-KwbqKFBt1K9AdRSoQKheYE89nCjsvzg4jCoZh96gdRFNp2xw__I_y8t6YQ</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Alcina, Murat</creator><creator>Pehlivanb, Ihsan</creator><creator>Koyuncuc, Ismail</creator><general>Elsevier GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Hardware design and implementation of a novel ANN-based chaotic generator in FPGA</title><author>Alcina, Murat ; Pehlivanb, Ihsan ; Koyuncuc, Ismail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b64933aea28bab625cce4972c97207ddf3f38abde2c28ef07144d01ef6edfb283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial Neural Networks</topic><topic>Chaos theory</topic><topic>Chaotic systems</topic><topic>Chips</topic><topic>Design analysis</topic><topic>Design engineering</topic><topic>Field Programmable Gate Arrays</topic><topic>Hardware</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>VHDL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alcina, Murat</creatorcontrib><creatorcontrib>Pehlivanb, Ihsan</creatorcontrib><creatorcontrib>Koyuncuc, Ismail</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optik (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alcina, Murat</au><au>Pehlivanb, Ihsan</au><au>Koyuncuc, Ismail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware design and implementation of a novel ANN-based chaotic generator in FPGA</atitle><jtitle>Optik (Stuttgart)</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>127</volume><issue>13</issue><spage>5500</spage><epage>5505</epage><pages>5500-5505</pages><issn>0030-4026</issn><eissn>1618-1336</eissn><abstract>This paper presents a novel hardware implementation of Artificial Neural Networks (ANNs) for modeling of the Pehlivan–Uyaroglu Chaotic System (PUCS) on Field Programmable Gate Array (FPGA). There are two main parts in the proposed work. In the first part, a 3-8-3 Feed Forward Neural Network (FFNN) has been created using Matlab R2015a. The training results show that FFNN trained with back propagation algorithm exhibits satisfactory precision for the direct implementation. In the second part, the hardware implementation of the trained network has been carried out. The designed architecture is presented using Very High Speed Integrated Circuits Hardware Description Language (VHDL) and is implemented on a Xilinx Virtex 6 (XC6VCX240T) chip. All related parameters are defined with IEEE 754 single precision floating point number format. For the approximation of Log-Sigmoid transfer function, Xilinx's COordinate Rotation DIgital Computer (CORDIC) design has been employed. The design can be used with a clock frequency up to 266.429MHz. Finally, chip statistics of FPGA and analysis results have been presented. The proposed work have showed that chaotic systems can be successfully modeled using ANNs on FPGA. In future, chaos-based engineering applications can be performed using ANN-based chaotic oscillators on FPGA.</abstract><pub>Elsevier GmbH</pub><doi>10.1016/j.ijleo.2016.03.042</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-4026
ispartof Optik (Stuttgart), 2016-07, Vol.127 (13), p.5500-5505
issn 0030-4026
1618-1336
language eng
recordid cdi_proquest_miscellaneous_1825444139
source Elsevier ScienceDirect Journals
subjects Artificial Neural Networks
Chaos theory
Chaotic systems
Chips
Design analysis
Design engineering
Field Programmable Gate Arrays
Hardware
Mathematical models
Matlab
VHDL
title Hardware design and implementation of a novel ANN-based chaotic generator in FPGA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware%20design%20and%20implementation%20of%20a%20novel%20ANN-based%20chaotic%20generator%20in%20FPGA&rft.jtitle=Optik%20(Stuttgart)&rft.au=Alcina,%20Murat&rft.date=2016-07-01&rft.volume=127&rft.issue=13&rft.spage=5500&rft.epage=5505&rft.pages=5500-5505&rft.issn=0030-4026&rft.eissn=1618-1336&rft_id=info:doi/10.1016/j.ijleo.2016.03.042&rft_dat=%3Cproquest_cross%3E1825444139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825444139&rft_id=info:pmid/&rft_els_id=S0030402616302108&rfr_iscdi=true