Change of State of a Dynamical Unit in the Transition of Coherence
The change of state of one map in the network of nonlocal coupled logistic maps at the transition of coherence is studied. With the increase of coupling strength, the network dynamics transits from the incoherent state into the coherent state. In the process, the iteration of the map first changes f...
Gespeichert in:
Veröffentlicht in: | Chinese physics letters 2015, Vol.32 (1), p.18-21 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 1 |
container_start_page | 18 |
container_title | Chinese physics letters |
container_volume | 32 |
creator | Yang, Yan-Jin Du, Ru-Hai Wang, Sheng-Jun Jin, Tao Qu, Shi-Xian |
description | The change of state of one map in the network of nonlocal coupled logistic maps at the transition of coherence is studied. With the increase of coupling strength, the network dynamics transits from the incoherent state into the coherent state. In the process, the iteration of the map first changes from chaos to period state, then from periodic to chaotic state again. For the periodic doubling bifurcations, similar to an isolated map, the largest Lyapunov exponent tends to zero from a negative value. However, the states of coupled maps exhibit complex behavior rather than converge to a few fixed values. The behavior brings a new chimera state of coupled logistic maps. The bifurcation diagram is identical to the phase order of maps iterations. For the bifurcation between 1-band and multi-band chaos, the symmetry of chaotic bands emerges and the transition of the order of iteration direction occurs. |
doi_str_mv | 10.1088/0256-307X/32/1/010502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825443681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>664021803</cqvip_id><sourcerecordid>1825443681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-c6175dec2dec0e0abbacbd54bc219d57be20b5b5fa1944443d094b710959b09e3</originalsourceid><addsrcrecordid>eNo9kMlqwzAQQEVpoenyCQXTUy-uZyTLy7F1Vwj00AR6E5IsxyqOnFjKIX9fuwkRDJrDe3N4hNwhPCIURQKUZzGD_CdhNMEEEDjQMzLDPMWY8RTOyezEXJIr738BEAvEGXmuWulWJuqb6DvI8L_I6GXv5Npq2UVLZ0NkXRRaEy0G6bwNtncTVfWtGYzT5oZcNLLz5vb4X5Pl2-ui-ojnX--f1dM81gxZiHWGOa-NpuOAAamU1KrmqdIUy5rnylBQXPFGYpmOj9VQpipHKHmpoDTsmjwc7m6GfrszPoi19dp0nXSm33mBBeWjlhU4ovyA6qH3fjCN2Ax2LYe9QBBTMzH1EFMPwahAcWg2evdHr-3damvd6iRmWQoUC2DsDx75aa0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825443681</pqid></control><display><type>article</type><title>Change of State of a Dynamical Unit in the Transition of Coherence</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Yang, Yan-Jin ; Du, Ru-Hai ; Wang, Sheng-Jun ; Jin, Tao ; Qu, Shi-Xian</creator><creatorcontrib>Yang, Yan-Jin ; Du, Ru-Hai ; Wang, Sheng-Jun ; Jin, Tao ; Qu, Shi-Xian</creatorcontrib><description>The change of state of one map in the network of nonlocal coupled logistic maps at the transition of coherence is studied. With the increase of coupling strength, the network dynamics transits from the incoherent state into the coherent state. In the process, the iteration of the map first changes from chaos to period state, then from periodic to chaotic state again. For the periodic doubling bifurcations, similar to an isolated map, the largest Lyapunov exponent tends to zero from a negative value. However, the states of coupled maps exhibit complex behavior rather than converge to a few fixed values. The behavior brings a new chimera state of coupled logistic maps. The bifurcation diagram is identical to the phase order of maps iterations. For the bifurcation between 1-band and multi-band chaos, the symmetry of chaotic bands emerges and the transition of the order of iteration direction occurs.</description><identifier>ISSN: 0256-307X</identifier><identifier>EISSN: 1741-3540</identifier><identifier>DOI: 10.1088/0256-307X/32/1/010502</identifier><language>eng</language><subject>Bifurcations ; Chaos theory ; Coherence ; Coupling ; Joining ; Logistics ; Logistic映射 ; Transits ; Transportation networks ; 动力单元 ; 最大Lyapunov指数 ; 混沌状态 ; 状态显示 ; 耦合强度 ; 迭代方向 ; 非相干</subject><ispartof>Chinese physics letters, 2015, Vol.32 (1), p.18-21</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-c6175dec2dec0e0abbacbd54bc219d57be20b5b5fa1944443d094b710959b09e3</citedby><cites>FETCH-LOGICAL-c313t-c6175dec2dec0e0abbacbd54bc219d57be20b5b5fa1944443d094b710959b09e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84212X/84212X.jpg</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>Yang, Yan-Jin</creatorcontrib><creatorcontrib>Du, Ru-Hai</creatorcontrib><creatorcontrib>Wang, Sheng-Jun</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Qu, Shi-Xian</creatorcontrib><title>Change of State of a Dynamical Unit in the Transition of Coherence</title><title>Chinese physics letters</title><addtitle>Chinese Physics Letters</addtitle><description>The change of state of one map in the network of nonlocal coupled logistic maps at the transition of coherence is studied. With the increase of coupling strength, the network dynamics transits from the incoherent state into the coherent state. In the process, the iteration of the map first changes from chaos to period state, then from periodic to chaotic state again. For the periodic doubling bifurcations, similar to an isolated map, the largest Lyapunov exponent tends to zero from a negative value. However, the states of coupled maps exhibit complex behavior rather than converge to a few fixed values. The behavior brings a new chimera state of coupled logistic maps. The bifurcation diagram is identical to the phase order of maps iterations. For the bifurcation between 1-band and multi-band chaos, the symmetry of chaotic bands emerges and the transition of the order of iteration direction occurs.</description><subject>Bifurcations</subject><subject>Chaos theory</subject><subject>Coherence</subject><subject>Coupling</subject><subject>Joining</subject><subject>Logistics</subject><subject>Logistic映射</subject><subject>Transits</subject><subject>Transportation networks</subject><subject>动力单元</subject><subject>最大Lyapunov指数</subject><subject>混沌状态</subject><subject>状态显示</subject><subject>耦合强度</subject><subject>迭代方向</subject><subject>非相干</subject><issn>0256-307X</issn><issn>1741-3540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMlqwzAQQEVpoenyCQXTUy-uZyTLy7F1Vwj00AR6E5IsxyqOnFjKIX9fuwkRDJrDe3N4hNwhPCIURQKUZzGD_CdhNMEEEDjQMzLDPMWY8RTOyezEXJIr738BEAvEGXmuWulWJuqb6DvI8L_I6GXv5Npq2UVLZ0NkXRRaEy0G6bwNtncTVfWtGYzT5oZcNLLz5vb4X5Pl2-ui-ojnX--f1dM81gxZiHWGOa-NpuOAAamU1KrmqdIUy5rnylBQXPFGYpmOj9VQpipHKHmpoDTsmjwc7m6GfrszPoi19dp0nXSm33mBBeWjlhU4ovyA6qH3fjCN2Ax2LYe9QBBTMzH1EFMPwahAcWg2evdHr-3damvd6iRmWQoUC2DsDx75aa0</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Yang, Yan-Jin</creator><creator>Du, Ru-Hai</creator><creator>Wang, Sheng-Jun</creator><creator>Jin, Tao</creator><creator>Qu, Shi-Xian</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2015</creationdate><title>Change of State of a Dynamical Unit in the Transition of Coherence</title><author>Yang, Yan-Jin ; Du, Ru-Hai ; Wang, Sheng-Jun ; Jin, Tao ; Qu, Shi-Xian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-c6175dec2dec0e0abbacbd54bc219d57be20b5b5fa1944443d094b710959b09e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bifurcations</topic><topic>Chaos theory</topic><topic>Coherence</topic><topic>Coupling</topic><topic>Joining</topic><topic>Logistics</topic><topic>Logistic映射</topic><topic>Transits</topic><topic>Transportation networks</topic><topic>动力单元</topic><topic>最大Lyapunov指数</topic><topic>混沌状态</topic><topic>状态显示</topic><topic>耦合强度</topic><topic>迭代方向</topic><topic>非相干</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yan-Jin</creatorcontrib><creatorcontrib>Du, Ru-Hai</creatorcontrib><creatorcontrib>Wang, Sheng-Jun</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Qu, Shi-Xian</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yan-Jin</au><au>Du, Ru-Hai</au><au>Wang, Sheng-Jun</au><au>Jin, Tao</au><au>Qu, Shi-Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Change of State of a Dynamical Unit in the Transition of Coherence</atitle><jtitle>Chinese physics letters</jtitle><addtitle>Chinese Physics Letters</addtitle><date>2015</date><risdate>2015</risdate><volume>32</volume><issue>1</issue><spage>18</spage><epage>21</epage><pages>18-21</pages><issn>0256-307X</issn><eissn>1741-3540</eissn><abstract>The change of state of one map in the network of nonlocal coupled logistic maps at the transition of coherence is studied. With the increase of coupling strength, the network dynamics transits from the incoherent state into the coherent state. In the process, the iteration of the map first changes from chaos to period state, then from periodic to chaotic state again. For the periodic doubling bifurcations, similar to an isolated map, the largest Lyapunov exponent tends to zero from a negative value. However, the states of coupled maps exhibit complex behavior rather than converge to a few fixed values. The behavior brings a new chimera state of coupled logistic maps. The bifurcation diagram is identical to the phase order of maps iterations. For the bifurcation between 1-band and multi-band chaos, the symmetry of chaotic bands emerges and the transition of the order of iteration direction occurs.</abstract><doi>10.1088/0256-307X/32/1/010502</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-307X |
ispartof | Chinese physics letters, 2015, Vol.32 (1), p.18-21 |
issn | 0256-307X 1741-3540 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825443681 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection |
subjects | Bifurcations Chaos theory Coherence Coupling Joining Logistics Logistic映射 Transits Transportation networks 动力单元 最大Lyapunov指数 混沌状态 状态显示 耦合强度 迭代方向 非相干 |
title | Change of State of a Dynamical Unit in the Transition of Coherence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Change%20of%20State%20of%20a%20Dynamical%20Unit%20in%20the%20Transition%20of%20Coherence&rft.jtitle=Chinese%20physics%20letters&rft.au=Yang,%20Yan-Jin&rft.date=2015&rft.volume=32&rft.issue=1&rft.spage=18&rft.epage=21&rft.pages=18-21&rft.issn=0256-307X&rft.eissn=1741-3540&rft_id=info:doi/10.1088/0256-307X/32/1/010502&rft_dat=%3Cproquest_cross%3E1825443681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825443681&rft_id=info:pmid/&rft_cqvip_id=664021803&rfr_iscdi=true |