Mixed-mode cohesive zone parameters for sub-micron scale stacked layers to predict microelectronic device reliability

With continued feature size reduction in microelectronics and with more than a billion transistors on a single integrated circuit (IC), on-chip interconnection has become a challenge in terms of processing-, electrical-, thermal-, and mechanical perspective. Today’s high-performance ICs have on-chip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2016-03, Vol.153, p.259-277
Hauptverfasser: Raghavan, Sathyanarayanan, Schmadlak, Ilko, Leal, George, Sitaraman, Suresh K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277
container_issue
container_start_page 259
container_title Engineering fracture mechanics
container_volume 153
creator Raghavan, Sathyanarayanan
Schmadlak, Ilko
Leal, George
Sitaraman, Suresh K.
description With continued feature size reduction in microelectronics and with more than a billion transistors on a single integrated circuit (IC), on-chip interconnection has become a challenge in terms of processing-, electrical-, thermal-, and mechanical perspective. Today’s high-performance ICs have on-chip back-end-of-line (BEOL) layers that consist of copper traces and vias interspersed with low-k dielectric materials. These layers have thicknesses in the range of 100nm near the transistors and 1000nm away from the transistors and near the solder bumps. In such BEOL stacks, cracking and/or delamination is a common failure mode due to the low mechanical and adhesive strength of the dielectric materials as well as due to high thermally-induced stresses. However, there are no available cohesive zone models and parameters to study such interfacial cracks in sub-micron thick microelectronic layers. This work focuses on developing framework based on cohesive zone modeling approach to study interfacial delamination in sub-micron thick layers. Such a framework is then successfully applied to predict microelectronic device reliability. As intentionally creating pre-fabricated cracks in such interfaces is difficult, this work examines a combination of four-point bend and double-cantilever beam tests to create initial cracks and to develop cohesive zone parameters over a range of mode mixity. Similarly, a combination of four-point bend and end-notch flexure tests is used to cover additional range of mode mixity. In these tests, silicon wafers obtained from wafer foundry are used for experimental characterization. The developed parameters are then used in actual microelectronic device to predict the onset and propagation of crack, and the results from such predictions are successfully validated with experimental data.
doi_str_mv 10.1016/j.engfracmech.2015.12.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825442095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794415006876</els_id><sourcerecordid>1825442095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-71edd84aae95c8be0ce7dc74f09b45ac9fa2e755071803cdc9a9ce8037fc39d33</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEmPwH8KNS0vSNktzRBNf0hAXOEeZ47KMthlJOzF-PRnjwJGTLet5Lfsh5JKznDM-u17n2L81wUCHsMoLxkXOi5zx8ohMeC3LTJZcHJMJS6NMqqo6JWcxrhljclazCRmf3CfarPMWKfgVRrdF-uV7pBsTTIcDhkgbH2gcl1nnIPieRjAt0jgYeEdLW7PbM4Onm4DWwUB_MGwRhkQ7oBa3DpAGbJ1ZutYNu3Ny0pg24sVvnZLXu9uX-UO2eL5_nN8sMihFNWSSo7V1ZQwqAfUSGaC0IKuGqWUlDKjGFCiFYJLXrAQLyijA1MoGSmXLckquDns3wX-MGAfduQjYtqZHP0bN60JUVcGUSKg6oOn2GAM2ehNcZ8JOc6b3qvVa_1Gt96o1L3TymrLzQxbTL1uHQUdw2EPSEZIFbb37x5Zvl7ORPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825442095</pqid></control><display><type>article</type><title>Mixed-mode cohesive zone parameters for sub-micron scale stacked layers to predict microelectronic device reliability</title><source>Elsevier ScienceDirect Journals</source><creator>Raghavan, Sathyanarayanan ; Schmadlak, Ilko ; Leal, George ; Sitaraman, Suresh K.</creator><creatorcontrib>Raghavan, Sathyanarayanan ; Schmadlak, Ilko ; Leal, George ; Sitaraman, Suresh K.</creatorcontrib><description>With continued feature size reduction in microelectronics and with more than a billion transistors on a single integrated circuit (IC), on-chip interconnection has become a challenge in terms of processing-, electrical-, thermal-, and mechanical perspective. Today’s high-performance ICs have on-chip back-end-of-line (BEOL) layers that consist of copper traces and vias interspersed with low-k dielectric materials. These layers have thicknesses in the range of 100nm near the transistors and 1000nm away from the transistors and near the solder bumps. In such BEOL stacks, cracking and/or delamination is a common failure mode due to the low mechanical and adhesive strength of the dielectric materials as well as due to high thermally-induced stresses. However, there are no available cohesive zone models and parameters to study such interfacial cracks in sub-micron thick microelectronic layers. This work focuses on developing framework based on cohesive zone modeling approach to study interfacial delamination in sub-micron thick layers. Such a framework is then successfully applied to predict microelectronic device reliability. As intentionally creating pre-fabricated cracks in such interfaces is difficult, this work examines a combination of four-point bend and double-cantilever beam tests to create initial cracks and to develop cohesive zone parameters over a range of mode mixity. Similarly, a combination of four-point bend and end-notch flexure tests is used to cover additional range of mode mixity. In these tests, silicon wafers obtained from wafer foundry are used for experimental characterization. The developed parameters are then used in actual microelectronic device to predict the onset and propagation of crack, and the results from such predictions are successfully validated with experimental data.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2015.12.013</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>BEOL stack fracture ; Cohesion ; Cohesive zone modeling ; Devices ; Fracture mechanics ; Integrated circuits ; Mathematical models ; Microelectronic package reliability ; Microelectronics ; Semiconductor devices ; Transistors ; ULK cracking</subject><ispartof>Engineering fracture mechanics, 2016-03, Vol.153, p.259-277</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-71edd84aae95c8be0ce7dc74f09b45ac9fa2e755071803cdc9a9ce8037fc39d33</citedby><cites>FETCH-LOGICAL-c354t-71edd84aae95c8be0ce7dc74f09b45ac9fa2e755071803cdc9a9ce8037fc39d33</cites><orcidid>0000-0001-5429-6351 ; 0000-0001-7936-9609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013794415006876$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Raghavan, Sathyanarayanan</creatorcontrib><creatorcontrib>Schmadlak, Ilko</creatorcontrib><creatorcontrib>Leal, George</creatorcontrib><creatorcontrib>Sitaraman, Suresh K.</creatorcontrib><title>Mixed-mode cohesive zone parameters for sub-micron scale stacked layers to predict microelectronic device reliability</title><title>Engineering fracture mechanics</title><description>With continued feature size reduction in microelectronics and with more than a billion transistors on a single integrated circuit (IC), on-chip interconnection has become a challenge in terms of processing-, electrical-, thermal-, and mechanical perspective. Today’s high-performance ICs have on-chip back-end-of-line (BEOL) layers that consist of copper traces and vias interspersed with low-k dielectric materials. These layers have thicknesses in the range of 100nm near the transistors and 1000nm away from the transistors and near the solder bumps. In such BEOL stacks, cracking and/or delamination is a common failure mode due to the low mechanical and adhesive strength of the dielectric materials as well as due to high thermally-induced stresses. However, there are no available cohesive zone models and parameters to study such interfacial cracks in sub-micron thick microelectronic layers. This work focuses on developing framework based on cohesive zone modeling approach to study interfacial delamination in sub-micron thick layers. Such a framework is then successfully applied to predict microelectronic device reliability. As intentionally creating pre-fabricated cracks in such interfaces is difficult, this work examines a combination of four-point bend and double-cantilever beam tests to create initial cracks and to develop cohesive zone parameters over a range of mode mixity. Similarly, a combination of four-point bend and end-notch flexure tests is used to cover additional range of mode mixity. In these tests, silicon wafers obtained from wafer foundry are used for experimental characterization. The developed parameters are then used in actual microelectronic device to predict the onset and propagation of crack, and the results from such predictions are successfully validated with experimental data.</description><subject>BEOL stack fracture</subject><subject>Cohesion</subject><subject>Cohesive zone modeling</subject><subject>Devices</subject><subject>Fracture mechanics</subject><subject>Integrated circuits</subject><subject>Mathematical models</subject><subject>Microelectronic package reliability</subject><subject>Microelectronics</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><subject>ULK cracking</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEmPwH8KNS0vSNktzRBNf0hAXOEeZ47KMthlJOzF-PRnjwJGTLet5Lfsh5JKznDM-u17n2L81wUCHsMoLxkXOi5zx8ohMeC3LTJZcHJMJS6NMqqo6JWcxrhljclazCRmf3CfarPMWKfgVRrdF-uV7pBsTTIcDhkgbH2gcl1nnIPieRjAt0jgYeEdLW7PbM4Onm4DWwUB_MGwRhkQ7oBa3DpAGbJ1ZutYNu3Ny0pg24sVvnZLXu9uX-UO2eL5_nN8sMihFNWSSo7V1ZQwqAfUSGaC0IKuGqWUlDKjGFCiFYJLXrAQLyijA1MoGSmXLckquDns3wX-MGAfduQjYtqZHP0bN60JUVcGUSKg6oOn2GAM2ehNcZ8JOc6b3qvVa_1Gt96o1L3TymrLzQxbTL1uHQUdw2EPSEZIFbb37x5Zvl7ORPA</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Raghavan, Sathyanarayanan</creator><creator>Schmadlak, Ilko</creator><creator>Leal, George</creator><creator>Sitaraman, Suresh K.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5429-6351</orcidid><orcidid>https://orcid.org/0000-0001-7936-9609</orcidid></search><sort><creationdate>201603</creationdate><title>Mixed-mode cohesive zone parameters for sub-micron scale stacked layers to predict microelectronic device reliability</title><author>Raghavan, Sathyanarayanan ; Schmadlak, Ilko ; Leal, George ; Sitaraman, Suresh K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-71edd84aae95c8be0ce7dc74f09b45ac9fa2e755071803cdc9a9ce8037fc39d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>BEOL stack fracture</topic><topic>Cohesion</topic><topic>Cohesive zone modeling</topic><topic>Devices</topic><topic>Fracture mechanics</topic><topic>Integrated circuits</topic><topic>Mathematical models</topic><topic>Microelectronic package reliability</topic><topic>Microelectronics</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><topic>ULK cracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raghavan, Sathyanarayanan</creatorcontrib><creatorcontrib>Schmadlak, Ilko</creatorcontrib><creatorcontrib>Leal, George</creatorcontrib><creatorcontrib>Sitaraman, Suresh K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raghavan, Sathyanarayanan</au><au>Schmadlak, Ilko</au><au>Leal, George</au><au>Sitaraman, Suresh K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-mode cohesive zone parameters for sub-micron scale stacked layers to predict microelectronic device reliability</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2016-03</date><risdate>2016</risdate><volume>153</volume><spage>259</spage><epage>277</epage><pages>259-277</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>With continued feature size reduction in microelectronics and with more than a billion transistors on a single integrated circuit (IC), on-chip interconnection has become a challenge in terms of processing-, electrical-, thermal-, and mechanical perspective. Today’s high-performance ICs have on-chip back-end-of-line (BEOL) layers that consist of copper traces and vias interspersed with low-k dielectric materials. These layers have thicknesses in the range of 100nm near the transistors and 1000nm away from the transistors and near the solder bumps. In such BEOL stacks, cracking and/or delamination is a common failure mode due to the low mechanical and adhesive strength of the dielectric materials as well as due to high thermally-induced stresses. However, there are no available cohesive zone models and parameters to study such interfacial cracks in sub-micron thick microelectronic layers. This work focuses on developing framework based on cohesive zone modeling approach to study interfacial delamination in sub-micron thick layers. Such a framework is then successfully applied to predict microelectronic device reliability. As intentionally creating pre-fabricated cracks in such interfaces is difficult, this work examines a combination of four-point bend and double-cantilever beam tests to create initial cracks and to develop cohesive zone parameters over a range of mode mixity. Similarly, a combination of four-point bend and end-notch flexure tests is used to cover additional range of mode mixity. In these tests, silicon wafers obtained from wafer foundry are used for experimental characterization. The developed parameters are then used in actual microelectronic device to predict the onset and propagation of crack, and the results from such predictions are successfully validated with experimental data.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2015.12.013</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5429-6351</orcidid><orcidid>https://orcid.org/0000-0001-7936-9609</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2016-03, Vol.153, p.259-277
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_1825442095
source Elsevier ScienceDirect Journals
subjects BEOL stack fracture
Cohesion
Cohesive zone modeling
Devices
Fracture mechanics
Integrated circuits
Mathematical models
Microelectronic package reliability
Microelectronics
Semiconductor devices
Transistors
ULK cracking
title Mixed-mode cohesive zone parameters for sub-micron scale stacked layers to predict microelectronic device reliability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-mode%20cohesive%20zone%20parameters%20for%20sub-micron%20scale%20stacked%20layers%20to%20predict%20microelectronic%20device%20reliability&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Raghavan,%20Sathyanarayanan&rft.date=2016-03&rft.volume=153&rft.spage=259&rft.epage=277&rft.pages=259-277&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2015.12.013&rft_dat=%3Cproquest_cross%3E1825442095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825442095&rft_id=info:pmid/&rft_els_id=S0013794415006876&rfr_iscdi=true