Chemically-specific time-resolved surface photovoltage spectroscopy: Carrier dynamics at the interface of quantum dots attached to a metal oxide

We describe a new experimental pump-probe methodology where a 2D delay-line detector enables fast (ns) monitoring of a narrow XPS spectrum in combination with a continuous pump laser. This has been developed at the TEMPO beamline at Synchrotron SOLEIL to enable the study of systems with intrinsicall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2015-11, Vol.641, p.320-325
Hauptverfasser: Spencer, Ben F., Cliffe, Matthew J., Graham, Darren M., Hardman, Samantha J.O., Seddon, Elaine A., Syres, Karen L., Thomas, Andrew G., Sirotti, Fausto, Silly, Mathieu G., Akhtar, Javeed, O'Brien, Paul, Fairclough, Simon M., Smith, Jason M., Chattopadhyay, Swapan, Flavell, Wendy R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 325
container_issue
container_start_page 320
container_title Surface science
container_volume 641
creator Spencer, Ben F.
Cliffe, Matthew J.
Graham, Darren M.
Hardman, Samantha J.O.
Seddon, Elaine A.
Syres, Karen L.
Thomas, Andrew G.
Sirotti, Fausto
Silly, Mathieu G.
Akhtar, Javeed
O'Brien, Paul
Fairclough, Simon M.
Smith, Jason M.
Chattopadhyay, Swapan
Flavell, Wendy R.
description We describe a new experimental pump-probe methodology where a 2D delay-line detector enables fast (ns) monitoring of a narrow XPS spectrum in combination with a continuous pump laser. This has been developed at the TEMPO beamline at Synchrotron SOLEIL to enable the study of systems with intrinsically slow electron dynamics, and to complement faster measurements that use a fs laser as the pump. We demonstrate its use in a time-resolved study of the surface photovoltage of the m-plane ZnO (101¯0) surface which shows persistent photoconductivity, requiring monitoring periods on ms timescales and longer. We make measurements from this surface in the presence and absence of chemically-linked quantum dots (QDs), using type I PbS and type II CdSe/ZnSe (core/shell) QDs as examples. We monitor signals from both the ZnO substrate and the bound QDs during photoexcitation, yielding evidence for charge injection from the QDs into the ZnO. The chemical specificity of the technique allows us to observe differences in the extent to which the QD systems are influenced by the field of the surface depletion layer at the ZnO surface, which we attribute to differences in the band structure at the interface. [Display omitted] •Time-resolved surface photovoltage spectroscopy measures carrier dynamics in ZnO.•A new experimental technique at SOLEIL combines fast XPS with a modulated CW laser.•Quantum dots are chemically linked to ZnO, a model for next-generation solar cells.•Evidence of injection of charge carriers from quantum dots to the substrate
doi_str_mv 10.1016/j.susc.2015.03.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825441455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602815000709</els_id><sourcerecordid>1825441455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-b72b50e3a6075262f0247946a8fe9ecc5b5671f66dfd9be6ae32c9087c30f1893</originalsourceid><addsrcrecordid>eNp9kMFO3DAURS1UJKbAD7DyspuEZyd2EtRNNSoUCYlNu7Y8zjPjURIH2xl1_oJPxtF03bd5m3uudA8hdwxKBkzeH8q4RFNyYKKEqgQGF2TD2qYreCPaL2QDUHWFBN5eka8xHiBf3YkN-djucXRGD8OpiDMaZ52hyY1YBIx-OGJP4xKsNkjnvU_-6Iek35Cu2RR8NH4-PdCtDsFhoP1p0rktUp1o2iN1U8Iz7C19X_SUlpH2Pq2BpM0-tydPNR0x6YH6v67HG3Jp9RDx9t-_Jn8ef_7e_ipeXp-etz9eClPXTSp2Dd8JwEpLaASX3AKvm66WurXYoTFiJ2TDrJS97bsdSo0VNx20janAsrarrsm3c-8c_PuCManRRYPDoCf0S1Ss5aKuWS1EjvJz1OTBMaBVc3CjDifFQK361UGt-tWqX0Glsv4MfT9DmEccsxwVjcPJYO9CVqd67_6HfwIa5ZHt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825441455</pqid></control><display><type>article</type><title>Chemically-specific time-resolved surface photovoltage spectroscopy: Carrier dynamics at the interface of quantum dots attached to a metal oxide</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Spencer, Ben F. ; Cliffe, Matthew J. ; Graham, Darren M. ; Hardman, Samantha J.O. ; Seddon, Elaine A. ; Syres, Karen L. ; Thomas, Andrew G. ; Sirotti, Fausto ; Silly, Mathieu G. ; Akhtar, Javeed ; O'Brien, Paul ; Fairclough, Simon M. ; Smith, Jason M. ; Chattopadhyay, Swapan ; Flavell, Wendy R.</creator><creatorcontrib>Spencer, Ben F. ; Cliffe, Matthew J. ; Graham, Darren M. ; Hardman, Samantha J.O. ; Seddon, Elaine A. ; Syres, Karen L. ; Thomas, Andrew G. ; Sirotti, Fausto ; Silly, Mathieu G. ; Akhtar, Javeed ; O'Brien, Paul ; Fairclough, Simon M. ; Smith, Jason M. ; Chattopadhyay, Swapan ; Flavell, Wendy R.</creatorcontrib><description>We describe a new experimental pump-probe methodology where a 2D delay-line detector enables fast (ns) monitoring of a narrow XPS spectrum in combination with a continuous pump laser. This has been developed at the TEMPO beamline at Synchrotron SOLEIL to enable the study of systems with intrinsically slow electron dynamics, and to complement faster measurements that use a fs laser as the pump. We demonstrate its use in a time-resolved study of the surface photovoltage of the m-plane ZnO (101¯0) surface which shows persistent photoconductivity, requiring monitoring periods on ms timescales and longer. We make measurements from this surface in the presence and absence of chemically-linked quantum dots (QDs), using type I PbS and type II CdSe/ZnSe (core/shell) QDs as examples. We monitor signals from both the ZnO substrate and the bound QDs during photoexcitation, yielding evidence for charge injection from the QDs into the ZnO. The chemical specificity of the technique allows us to observe differences in the extent to which the QD systems are influenced by the field of the surface depletion layer at the ZnO surface, which we attribute to differences in the band structure at the interface. [Display omitted] •Time-resolved surface photovoltage spectroscopy measures carrier dynamics in ZnO.•A new experimental technique at SOLEIL combines fast XPS with a modulated CW laser.•Quantum dots are chemically linked to ZnO, a model for next-generation solar cells.•Evidence of injection of charge carriers from quantum dots to the substrate</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2015.03.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Carrier dynamics ; Colloidal quantum dots ; Detectors ; Dynamical systems ; Dynamics ; Monitoring ; Photovoltages ; Photovoltaics ; Pumps ; Quantum dots ; Semiconductor surface ; Surface photovoltage ; Time-resolved photoemission ; Zinc oxide</subject><ispartof>Surface science, 2015-11, Vol.641, p.320-325</ispartof><rights>2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-b72b50e3a6075262f0247946a8fe9ecc5b5671f66dfd9be6ae32c9087c30f1893</citedby><cites>FETCH-LOGICAL-c447t-b72b50e3a6075262f0247946a8fe9ecc5b5671f66dfd9be6ae32c9087c30f1893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.susc.2015.03.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Spencer, Ben F.</creatorcontrib><creatorcontrib>Cliffe, Matthew J.</creatorcontrib><creatorcontrib>Graham, Darren M.</creatorcontrib><creatorcontrib>Hardman, Samantha J.O.</creatorcontrib><creatorcontrib>Seddon, Elaine A.</creatorcontrib><creatorcontrib>Syres, Karen L.</creatorcontrib><creatorcontrib>Thomas, Andrew G.</creatorcontrib><creatorcontrib>Sirotti, Fausto</creatorcontrib><creatorcontrib>Silly, Mathieu G.</creatorcontrib><creatorcontrib>Akhtar, Javeed</creatorcontrib><creatorcontrib>O'Brien, Paul</creatorcontrib><creatorcontrib>Fairclough, Simon M.</creatorcontrib><creatorcontrib>Smith, Jason M.</creatorcontrib><creatorcontrib>Chattopadhyay, Swapan</creatorcontrib><creatorcontrib>Flavell, Wendy R.</creatorcontrib><title>Chemically-specific time-resolved surface photovoltage spectroscopy: Carrier dynamics at the interface of quantum dots attached to a metal oxide</title><title>Surface science</title><description>We describe a new experimental pump-probe methodology where a 2D delay-line detector enables fast (ns) monitoring of a narrow XPS spectrum in combination with a continuous pump laser. This has been developed at the TEMPO beamline at Synchrotron SOLEIL to enable the study of systems with intrinsically slow electron dynamics, and to complement faster measurements that use a fs laser as the pump. We demonstrate its use in a time-resolved study of the surface photovoltage of the m-plane ZnO (101¯0) surface which shows persistent photoconductivity, requiring monitoring periods on ms timescales and longer. We make measurements from this surface in the presence and absence of chemically-linked quantum dots (QDs), using type I PbS and type II CdSe/ZnSe (core/shell) QDs as examples. We monitor signals from both the ZnO substrate and the bound QDs during photoexcitation, yielding evidence for charge injection from the QDs into the ZnO. The chemical specificity of the technique allows us to observe differences in the extent to which the QD systems are influenced by the field of the surface depletion layer at the ZnO surface, which we attribute to differences in the band structure at the interface. [Display omitted] •Time-resolved surface photovoltage spectroscopy measures carrier dynamics in ZnO.•A new experimental technique at SOLEIL combines fast XPS with a modulated CW laser.•Quantum dots are chemically linked to ZnO, a model for next-generation solar cells.•Evidence of injection of charge carriers from quantum dots to the substrate</description><subject>Carrier dynamics</subject><subject>Colloidal quantum dots</subject><subject>Detectors</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Monitoring</subject><subject>Photovoltages</subject><subject>Photovoltaics</subject><subject>Pumps</subject><subject>Quantum dots</subject><subject>Semiconductor surface</subject><subject>Surface photovoltage</subject><subject>Time-resolved photoemission</subject><subject>Zinc oxide</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAURS1UJKbAD7DyspuEZyd2EtRNNSoUCYlNu7Y8zjPjURIH2xl1_oJPxtF03bd5m3uudA8hdwxKBkzeH8q4RFNyYKKEqgQGF2TD2qYreCPaL2QDUHWFBN5eka8xHiBf3YkN-djucXRGD8OpiDMaZ52hyY1YBIx-OGJP4xKsNkjnvU_-6Iek35Cu2RR8NH4-PdCtDsFhoP1p0rktUp1o2iN1U8Iz7C19X_SUlpH2Pq2BpM0-tydPNR0x6YH6v67HG3Jp9RDx9t-_Jn8ef_7e_ipeXp-etz9eClPXTSp2Dd8JwEpLaASX3AKvm66WurXYoTFiJ2TDrJS97bsdSo0VNx20janAsrarrsm3c-8c_PuCManRRYPDoCf0S1Ss5aKuWS1EjvJz1OTBMaBVc3CjDifFQK361UGt-tWqX0Glsv4MfT9DmEccsxwVjcPJYO9CVqd67_6HfwIa5ZHt</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Spencer, Ben F.</creator><creator>Cliffe, Matthew J.</creator><creator>Graham, Darren M.</creator><creator>Hardman, Samantha J.O.</creator><creator>Seddon, Elaine A.</creator><creator>Syres, Karen L.</creator><creator>Thomas, Andrew G.</creator><creator>Sirotti, Fausto</creator><creator>Silly, Mathieu G.</creator><creator>Akhtar, Javeed</creator><creator>O'Brien, Paul</creator><creator>Fairclough, Simon M.</creator><creator>Smith, Jason M.</creator><creator>Chattopadhyay, Swapan</creator><creator>Flavell, Wendy R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151101</creationdate><title>Chemically-specific time-resolved surface photovoltage spectroscopy: Carrier dynamics at the interface of quantum dots attached to a metal oxide</title><author>Spencer, Ben F. ; Cliffe, Matthew J. ; Graham, Darren M. ; Hardman, Samantha J.O. ; Seddon, Elaine A. ; Syres, Karen L. ; Thomas, Andrew G. ; Sirotti, Fausto ; Silly, Mathieu G. ; Akhtar, Javeed ; O'Brien, Paul ; Fairclough, Simon M. ; Smith, Jason M. ; Chattopadhyay, Swapan ; Flavell, Wendy R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-b72b50e3a6075262f0247946a8fe9ecc5b5671f66dfd9be6ae32c9087c30f1893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carrier dynamics</topic><topic>Colloidal quantum dots</topic><topic>Detectors</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Monitoring</topic><topic>Photovoltages</topic><topic>Photovoltaics</topic><topic>Pumps</topic><topic>Quantum dots</topic><topic>Semiconductor surface</topic><topic>Surface photovoltage</topic><topic>Time-resolved photoemission</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spencer, Ben F.</creatorcontrib><creatorcontrib>Cliffe, Matthew J.</creatorcontrib><creatorcontrib>Graham, Darren M.</creatorcontrib><creatorcontrib>Hardman, Samantha J.O.</creatorcontrib><creatorcontrib>Seddon, Elaine A.</creatorcontrib><creatorcontrib>Syres, Karen L.</creatorcontrib><creatorcontrib>Thomas, Andrew G.</creatorcontrib><creatorcontrib>Sirotti, Fausto</creatorcontrib><creatorcontrib>Silly, Mathieu G.</creatorcontrib><creatorcontrib>Akhtar, Javeed</creatorcontrib><creatorcontrib>O'Brien, Paul</creatorcontrib><creatorcontrib>Fairclough, Simon M.</creatorcontrib><creatorcontrib>Smith, Jason M.</creatorcontrib><creatorcontrib>Chattopadhyay, Swapan</creatorcontrib><creatorcontrib>Flavell, Wendy R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spencer, Ben F.</au><au>Cliffe, Matthew J.</au><au>Graham, Darren M.</au><au>Hardman, Samantha J.O.</au><au>Seddon, Elaine A.</au><au>Syres, Karen L.</au><au>Thomas, Andrew G.</au><au>Sirotti, Fausto</au><au>Silly, Mathieu G.</au><au>Akhtar, Javeed</au><au>O'Brien, Paul</au><au>Fairclough, Simon M.</au><au>Smith, Jason M.</au><au>Chattopadhyay, Swapan</au><au>Flavell, Wendy R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemically-specific time-resolved surface photovoltage spectroscopy: Carrier dynamics at the interface of quantum dots attached to a metal oxide</atitle><jtitle>Surface science</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>641</volume><spage>320</spage><epage>325</epage><pages>320-325</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><abstract>We describe a new experimental pump-probe methodology where a 2D delay-line detector enables fast (ns) monitoring of a narrow XPS spectrum in combination with a continuous pump laser. This has been developed at the TEMPO beamline at Synchrotron SOLEIL to enable the study of systems with intrinsically slow electron dynamics, and to complement faster measurements that use a fs laser as the pump. We demonstrate its use in a time-resolved study of the surface photovoltage of the m-plane ZnO (101¯0) surface which shows persistent photoconductivity, requiring monitoring periods on ms timescales and longer. We make measurements from this surface in the presence and absence of chemically-linked quantum dots (QDs), using type I PbS and type II CdSe/ZnSe (core/shell) QDs as examples. We monitor signals from both the ZnO substrate and the bound QDs during photoexcitation, yielding evidence for charge injection from the QDs into the ZnO. The chemical specificity of the technique allows us to observe differences in the extent to which the QD systems are influenced by the field of the surface depletion layer at the ZnO surface, which we attribute to differences in the band structure at the interface. [Display omitted] •Time-resolved surface photovoltage spectroscopy measures carrier dynamics in ZnO.•A new experimental technique at SOLEIL combines fast XPS with a modulated CW laser.•Quantum dots are chemically linked to ZnO, a model for next-generation solar cells.•Evidence of injection of charge carriers from quantum dots to the substrate</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2015.03.010</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2015-11, Vol.641, p.320-325
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_miscellaneous_1825441455
source ScienceDirect Journals (5 years ago - present)
subjects Carrier dynamics
Colloidal quantum dots
Detectors
Dynamical systems
Dynamics
Monitoring
Photovoltages
Photovoltaics
Pumps
Quantum dots
Semiconductor surface
Surface photovoltage
Time-resolved photoemission
Zinc oxide
title Chemically-specific time-resolved surface photovoltage spectroscopy: Carrier dynamics at the interface of quantum dots attached to a metal oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemically-specific%20time-resolved%20surface%20photovoltage%20spectroscopy:%20Carrier%20dynamics%20at%20the%20interface%20of%20quantum%20dots%20attached%20to%20a%20metal%20oxide&rft.jtitle=Surface%20science&rft.au=Spencer,%20Ben%20F.&rft.date=2015-11-01&rft.volume=641&rft.spage=320&rft.epage=325&rft.pages=320-325&rft.issn=0039-6028&rft.eissn=1879-2758&rft_id=info:doi/10.1016/j.susc.2015.03.010&rft_dat=%3Cproquest_cross%3E1825441455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825441455&rft_id=info:pmid/&rft_els_id=S0039602815000709&rfr_iscdi=true