Chlorine Decay KINETICS of a Reservoir Water
Massachusetts Water Resources Authority started adding sodium hypochlorite to its raw water (Wachusett Reservoir) in September 1997 to achieve compliance with the requirements of the Surface Water Treatment Rule for unfiltered surface water supplies, mainly the 3‐log C × T (concentration times time)...
Gespeichert in:
Veröffentlicht in: | Journal - American Water Works Association 2001-10, Vol.93 (10), p.101-110 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 10 |
container_start_page | 101 |
container_title | Journal - American Water Works Association |
container_volume | 93 |
creator | SUNG, WINDSOR LEVENSON, JOAN TOOLAN, TARA O'DAY, D. KELLY |
description | Massachusetts Water Resources Authority started adding sodium hypochlorite to its raw water (Wachusett Reservoir) in September 1997 to achieve compliance with the requirements of the Surface Water Treatment Rule for unfiltered surface water supplies, mainly the 3‐log C × T (concentration times time) value for Giardia inactivation. There were concerns about the chlorine dosage necessary to achieve pathogen inactivation and the effect of that dosage on the amount of disinfection by‐products (DBPs) formed. Weekly chlorine decay tests were initiated in April 1998 to gather information on chlorine decay so that the necessary parameters to produce an integrated C × T value could be developed (area under the chlorine decay curve). Wachusett Reservoir water quality is also affected by transfer of water from the Quabbin Reservoir, which has lower total organic carbon and UV254 absorbance levels. A model was developed to describe the rate constant as a function of hydroxide concentration (taking both pH and temperature effects into account through the ion product of water), UV254 absorbance, and chlorine dose only. The availability of kinetic parameters allows development of a method for calculating C × T achievement for primary disinfection. Models for DBP formation will be presented in another article. These models together allow for better determination of the necessary chlorine dosage to achieve the required C × T value and minimize DBP formation. |
doi_str_mv | 10.1002/j.1551-8833.2001.tb09313.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18249797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41297860</jstor_id><sourcerecordid>41297860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4593-8d49eae8d237a1f09629557a34a5ab63f5d154411f91f44e1b3e5b9630a8338c3</originalsourceid><addsrcrecordid>eNqVkF9LwzAUxYMoOKcfQShDfLI1N3_WxLcxpw6Hgk7mW0i7FFu6dSadbt_e1I0JvohPueH-7jn3HoQ6gCPAmFwWEXAOoRCURgRjiOoESwo0Wu2h1q61j1oYYxoCx6-H6Mi5wn-BA2uhi_5bWdl8boJrk-p1cD98GIyH_eegygIdPBln7EeV22Cia2OP0UGmS2dOtm8bvdwMxv27cPR4O-z3RmHKuKShmDJptBFTQmMNGZZdIjmPNWWa66RLMz4FzhhAJiFjzEBCDU9kl2LtlxUpbaPzje7CVu9L42o1y11qylLPTbV0CgRhMpbx3yDjQpIu9mDnF1hUSzv3RyhC_DKxEOChqw2U2so5azK1sPlM27UCrJq4VaGaTFWTqWriVtu41coPn20dtEt1mVk9T3P3owCUAW48ehvsMy_N-h8GqjeZ9L5rr3G60ShcXdmdBgMiY-GP_QJTnZoa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221547881</pqid></control><display><type>article</type><title>Chlorine Decay KINETICS of a Reservoir Water</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Jstor Complete Legacy</source><creator>SUNG, WINDSOR ; LEVENSON, JOAN ; TOOLAN, TARA ; O'DAY, D. KELLY</creator><creatorcontrib>SUNG, WINDSOR ; LEVENSON, JOAN ; TOOLAN, TARA ; O'DAY, D. KELLY</creatorcontrib><description>Massachusetts Water Resources Authority started adding sodium hypochlorite to its raw water (Wachusett Reservoir) in September 1997 to achieve compliance with the requirements of the Surface Water Treatment Rule for unfiltered surface water supplies, mainly the 3‐log C × T (concentration times time) value for Giardia inactivation. There were concerns about the chlorine dosage necessary to achieve pathogen inactivation and the effect of that dosage on the amount of disinfection by‐products (DBPs) formed. Weekly chlorine decay tests were initiated in April 1998 to gather information on chlorine decay so that the necessary parameters to produce an integrated C × T value could be developed (area under the chlorine decay curve). Wachusett Reservoir water quality is also affected by transfer of water from the Quabbin Reservoir, which has lower total organic carbon and UV254 absorbance levels. A model was developed to describe the rate constant as a function of hydroxide concentration (taking both pH and temperature effects into account through the ion product of water), UV254 absorbance, and chlorine dose only. The availability of kinetic parameters allows development of a method for calculating C × T achievement for primary disinfection. Models for DBP formation will be presented in another article. These models together allow for better determination of the necessary chlorine dosage to achieve the required C × T value and minimize DBP formation.</description><identifier>ISSN: 0003-150X</identifier><identifier>EISSN: 1551-8833</identifier><identifier>DOI: 10.1002/j.1551-8833.2001.tb09313.x</identifier><identifier>CODEN: JAWWA5</identifier><language>eng</language><publisher>Denver, CO: American Water Works Association</publisher><subject>Applied sciences ; Calibration ; Carbon ; Chlorine ; Compliance ; CT Values ; Decay ; Decay constants ; Disinfection ; Disinfection Byproducts ; Dosage ; Drinking water and swimming-pool water. Desalination ; Exact sciences and technology ; Giardia ; Kinetics ; Linear regression ; Massachusetts ; Mathematical constants ; Modeling ; Organic Carbon ; Pathogens ; Pollution ; Reservoirs ; Sodium Hypochlorite ; Supplies ; Surface Water ; Temperature ; Temperature effects ; Travel time ; USA, Massachusetts ; Water Quality ; Water Resources ; Water treatment ; Water treatment and pollution ; Water utilities</subject><ispartof>Journal - American Water Works Association, 2001-10, Vol.93 (10), p.101-110</ispartof><rights>Copyright© 2001 AWWA</rights><rights>2001 American Water Works Association</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Water Works Association Oct 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4593-8d49eae8d237a1f09629557a34a5ab63f5d154411f91f44e1b3e5b9630a8338c3</citedby><cites>FETCH-LOGICAL-c4593-8d49eae8d237a1f09629557a34a5ab63f5d154411f91f44e1b3e5b9630a8338c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41297860$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41297860$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27903,27904,45553,45554,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1134101$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SUNG, WINDSOR</creatorcontrib><creatorcontrib>LEVENSON, JOAN</creatorcontrib><creatorcontrib>TOOLAN, TARA</creatorcontrib><creatorcontrib>O'DAY, D. KELLY</creatorcontrib><title>Chlorine Decay KINETICS of a Reservoir Water</title><title>Journal - American Water Works Association</title><description>Massachusetts Water Resources Authority started adding sodium hypochlorite to its raw water (Wachusett Reservoir) in September 1997 to achieve compliance with the requirements of the Surface Water Treatment Rule for unfiltered surface water supplies, mainly the 3‐log C × T (concentration times time) value for Giardia inactivation. There were concerns about the chlorine dosage necessary to achieve pathogen inactivation and the effect of that dosage on the amount of disinfection by‐products (DBPs) formed. Weekly chlorine decay tests were initiated in April 1998 to gather information on chlorine decay so that the necessary parameters to produce an integrated C × T value could be developed (area under the chlorine decay curve). Wachusett Reservoir water quality is also affected by transfer of water from the Quabbin Reservoir, which has lower total organic carbon and UV254 absorbance levels. A model was developed to describe the rate constant as a function of hydroxide concentration (taking both pH and temperature effects into account through the ion product of water), UV254 absorbance, and chlorine dose only. The availability of kinetic parameters allows development of a method for calculating C × T achievement for primary disinfection. Models for DBP formation will be presented in another article. These models together allow for better determination of the necessary chlorine dosage to achieve the required C × T value and minimize DBP formation.</description><subject>Applied sciences</subject><subject>Calibration</subject><subject>Carbon</subject><subject>Chlorine</subject><subject>Compliance</subject><subject>CT Values</subject><subject>Decay</subject><subject>Decay constants</subject><subject>Disinfection</subject><subject>Disinfection Byproducts</subject><subject>Dosage</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Exact sciences and technology</subject><subject>Giardia</subject><subject>Kinetics</subject><subject>Linear regression</subject><subject>Massachusetts</subject><subject>Mathematical constants</subject><subject>Modeling</subject><subject>Organic Carbon</subject><subject>Pathogens</subject><subject>Pollution</subject><subject>Reservoirs</subject><subject>Sodium Hypochlorite</subject><subject>Supplies</subject><subject>Surface Water</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Travel time</subject><subject>USA, Massachusetts</subject><subject>Water Quality</subject><subject>Water Resources</subject><subject>Water treatment</subject><subject>Water treatment and pollution</subject><subject>Water utilities</subject><issn>0003-150X</issn><issn>1551-8833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqVkF9LwzAUxYMoOKcfQShDfLI1N3_WxLcxpw6Hgk7mW0i7FFu6dSadbt_e1I0JvohPueH-7jn3HoQ6gCPAmFwWEXAOoRCURgRjiOoESwo0Wu2h1q61j1oYYxoCx6-H6Mi5wn-BA2uhi_5bWdl8boJrk-p1cD98GIyH_eegygIdPBln7EeV22Cia2OP0UGmS2dOtm8bvdwMxv27cPR4O-z3RmHKuKShmDJptBFTQmMNGZZdIjmPNWWa66RLMz4FzhhAJiFjzEBCDU9kl2LtlxUpbaPzje7CVu9L42o1y11qylLPTbV0CgRhMpbx3yDjQpIu9mDnF1hUSzv3RyhC_DKxEOChqw2U2so5azK1sPlM27UCrJq4VaGaTFWTqWriVtu41coPn20dtEt1mVk9T3P3owCUAW48ehvsMy_N-h8GqjeZ9L5rr3G60ShcXdmdBgMiY-GP_QJTnZoa</recordid><startdate>200110</startdate><enddate>200110</enddate><creator>SUNG, WINDSOR</creator><creator>LEVENSON, JOAN</creator><creator>TOOLAN, TARA</creator><creator>O'DAY, D. KELLY</creator><general>American Water Works Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7X7</scope><scope>7XB</scope><scope>883</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0F</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>200110</creationdate><title>Chlorine Decay KINETICS of a Reservoir Water</title><author>SUNG, WINDSOR ; LEVENSON, JOAN ; TOOLAN, TARA ; O'DAY, D. KELLY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4593-8d49eae8d237a1f09629557a34a5ab63f5d154411f91f44e1b3e5b9630a8338c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Calibration</topic><topic>Carbon</topic><topic>Chlorine</topic><topic>Compliance</topic><topic>CT Values</topic><topic>Decay</topic><topic>Decay constants</topic><topic>Disinfection</topic><topic>Disinfection Byproducts</topic><topic>Dosage</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Exact sciences and technology</topic><topic>Giardia</topic><topic>Kinetics</topic><topic>Linear regression</topic><topic>Massachusetts</topic><topic>Mathematical constants</topic><topic>Modeling</topic><topic>Organic Carbon</topic><topic>Pathogens</topic><topic>Pollution</topic><topic>Reservoirs</topic><topic>Sodium Hypochlorite</topic><topic>Supplies</topic><topic>Surface Water</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Travel time</topic><topic>USA, Massachusetts</topic><topic>Water Quality</topic><topic>Water Resources</topic><topic>Water treatment</topic><topic>Water treatment and pollution</topic><topic>Water utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SUNG, WINDSOR</creatorcontrib><creatorcontrib>LEVENSON, JOAN</creatorcontrib><creatorcontrib>TOOLAN, TARA</creatorcontrib><creatorcontrib>O'DAY, D. KELLY</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Journal - American Water Works Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SUNG, WINDSOR</au><au>LEVENSON, JOAN</au><au>TOOLAN, TARA</au><au>O'DAY, D. KELLY</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlorine Decay KINETICS of a Reservoir Water</atitle><jtitle>Journal - American Water Works Association</jtitle><date>2001-10</date><risdate>2001</risdate><volume>93</volume><issue>10</issue><spage>101</spage><epage>110</epage><pages>101-110</pages><issn>0003-150X</issn><eissn>1551-8833</eissn><coden>JAWWA5</coden><abstract>Massachusetts Water Resources Authority started adding sodium hypochlorite to its raw water (Wachusett Reservoir) in September 1997 to achieve compliance with the requirements of the Surface Water Treatment Rule for unfiltered surface water supplies, mainly the 3‐log C × T (concentration times time) value for Giardia inactivation. There were concerns about the chlorine dosage necessary to achieve pathogen inactivation and the effect of that dosage on the amount of disinfection by‐products (DBPs) formed. Weekly chlorine decay tests were initiated in April 1998 to gather information on chlorine decay so that the necessary parameters to produce an integrated C × T value could be developed (area under the chlorine decay curve). Wachusett Reservoir water quality is also affected by transfer of water from the Quabbin Reservoir, which has lower total organic carbon and UV254 absorbance levels. A model was developed to describe the rate constant as a function of hydroxide concentration (taking both pH and temperature effects into account through the ion product of water), UV254 absorbance, and chlorine dose only. The availability of kinetic parameters allows development of a method for calculating C × T achievement for primary disinfection. Models for DBP formation will be presented in another article. These models together allow for better determination of the necessary chlorine dosage to achieve the required C × T value and minimize DBP formation.</abstract><cop>Denver, CO</cop><pub>American Water Works Association</pub><doi>10.1002/j.1551-8833.2001.tb09313.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-150X |
ispartof | Journal - American Water Works Association, 2001-10, Vol.93 (10), p.101-110 |
issn | 0003-150X 1551-8833 |
language | eng |
recordid | cdi_proquest_miscellaneous_18249797 |
source | Wiley Online Library Journals Frontfile Complete; Jstor Complete Legacy |
subjects | Applied sciences Calibration Carbon Chlorine Compliance CT Values Decay Decay constants Disinfection Disinfection Byproducts Dosage Drinking water and swimming-pool water. Desalination Exact sciences and technology Giardia Kinetics Linear regression Massachusetts Mathematical constants Modeling Organic Carbon Pathogens Pollution Reservoirs Sodium Hypochlorite Supplies Surface Water Temperature Temperature effects Travel time USA, Massachusetts Water Quality Water Resources Water treatment Water treatment and pollution Water utilities |
title | Chlorine Decay KINETICS of a Reservoir Water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlorine%20Decay%20KINETICS%20of%20a%20Reservoir%20Water&rft.jtitle=Journal%20-%20American%20Water%20Works%20Association&rft.au=SUNG,%20WINDSOR&rft.date=2001-10&rft.volume=93&rft.issue=10&rft.spage=101&rft.epage=110&rft.pages=101-110&rft.issn=0003-150X&rft.eissn=1551-8833&rft.coden=JAWWA5&rft_id=info:doi/10.1002/j.1551-8833.2001.tb09313.x&rft_dat=%3Cjstor_proqu%3E41297860%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221547881&rft_id=info:pmid/&rft_jstor_id=41297860&rfr_iscdi=true |