ATP-consuming processes in hepatocytes of river lamprey Lampetra fluviatilis on the course of prespawning starvation

The work was performed to establish which of the major ATP-consuming processes is the most important for surviving of hepatocytes of female lampreys on the course of prespawning starvation. The requirements of protein synthesis and Na+-K+-ATPase for ATP in the cells were monitored by the changes in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2016-11, Vol.201, p.95-100
Hauptverfasser: Agalakova, Natalia I., Brailovskaya, Irina V., Konovalova, Svetlana A., Korotkov, Sergei M., Lavrova, Elena A., Nikiforov, Anatolii A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue
container_start_page 95
container_title Comparative biochemistry and physiology. Part A, Molecular & integrative physiology
container_volume 201
creator Agalakova, Natalia I.
Brailovskaya, Irina V.
Konovalova, Svetlana A.
Korotkov, Sergei M.
Lavrova, Elena A.
Nikiforov, Anatolii A.
description The work was performed to establish which of the major ATP-consuming processes is the most important for surviving of hepatocytes of female lampreys on the course of prespawning starvation. The requirements of protein synthesis and Na+-K+-ATPase for ATP in the cells were monitored by the changes in mitochondrial membrane potential (MMP) in the presence of corresponding inhibitors from the peak of metabolic depression (January–February) to the time of recovery from it (March–April) and spawning (May). Integrity of lamprey liver cells was estimated by catalytic activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in blood plasma. In January–February, the share of ATP necessary for protein synthesis was 20–22%, whereas before spawning it decreased to 8–11%. Functioning of Na+-K+-pump required 22% of cellular ATP at the peak of metabolic depression, but 38% and 62% of ATP in March–April and May, respectively. Progression of prespawning period was accompanied by 3.75- and 1.6-fold rise of ALT and AST activities in blood plasma, respectively, whereas de Ritis coefficient decreased from 2.51±0.34 to 0.81±0.08, what indicates severe damage of hepatocyte membranes. Thus, the adaptive strategy of lamprey hepatocytes to develop metabolic depression under conditions of energy limitation is the selective production of proteins necessary for spawning, most probably vitellogenins. As spawning approaches, the maintenance of transmembrane ion gradients, membrane potential and cell volume to prevent premature cell death becomes the priority cell function.
doi_str_mv 10.1016/j.cbpa.2016.07.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1824545055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1095643316301489</els_id><sourcerecordid>1824545055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-f58538949d0db2803b2416b07e1bf75da4710b9e2dff6dd1b06328055045283c3</originalsourceid><addsrcrecordid>eNp9kEuP1DAQhC0EYpeFP8AB-cglwc88JC6r1fKQRoLDcrYcu8N6lMTBdgbNv6ejWTjSl-6WviqpipC3nNWc8ebDsXbDamuBd83amjHxjFxzLXmlpBTP8Wa9rhp8rsirnI8MR3H1klyJVvZ93_JrUm4fvlcuLnmbw_KTrik6yBkyDQt9hNWW6M4F3zjSFE6Q6GTnNcGZHnBDSZaO03YKtoQpILXQ8gjUxS1l2DWI5tX-XnbvXGw6IRiX1-TFaKcMb572Dfnx6f7h7kt1-Pb5693toXJSN6Uadadl16veMz-IjslBKN4MrAU-jK32VrWcDT0IP46N93xgjURMa6a06KSTN-T9xRdj_dogFzOH7GCa7AJxy4Z3QmmlUYGouKAuxZwTjGZNYbbpbDgze9vmaPa2zd62Ya3BtlH07sl_G2bw_yR_60Xg4wUATHkKkEx2ARYHPiRwxfgY_uf_B8bHkiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1824545055</pqid></control><display><type>article</type><title>ATP-consuming processes in hepatocytes of river lamprey Lampetra fluviatilis on the course of prespawning starvation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Agalakova, Natalia I. ; Brailovskaya, Irina V. ; Konovalova, Svetlana A. ; Korotkov, Sergei M. ; Lavrova, Elena A. ; Nikiforov, Anatolii A.</creator><creatorcontrib>Agalakova, Natalia I. ; Brailovskaya, Irina V. ; Konovalova, Svetlana A. ; Korotkov, Sergei M. ; Lavrova, Elena A. ; Nikiforov, Anatolii A.</creatorcontrib><description>The work was performed to establish which of the major ATP-consuming processes is the most important for surviving of hepatocytes of female lampreys on the course of prespawning starvation. The requirements of protein synthesis and Na+-K+-ATPase for ATP in the cells were monitored by the changes in mitochondrial membrane potential (MMP) in the presence of corresponding inhibitors from the peak of metabolic depression (January–February) to the time of recovery from it (March–April) and spawning (May). Integrity of lamprey liver cells was estimated by catalytic activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in blood plasma. In January–February, the share of ATP necessary for protein synthesis was 20–22%, whereas before spawning it decreased to 8–11%. Functioning of Na+-K+-pump required 22% of cellular ATP at the peak of metabolic depression, but 38% and 62% of ATP in March–April and May, respectively. Progression of prespawning period was accompanied by 3.75- and 1.6-fold rise of ALT and AST activities in blood plasma, respectively, whereas de Ritis coefficient decreased from 2.51±0.34 to 0.81±0.08, what indicates severe damage of hepatocyte membranes. Thus, the adaptive strategy of lamprey hepatocytes to develop metabolic depression under conditions of energy limitation is the selective production of proteins necessary for spawning, most probably vitellogenins. As spawning approaches, the maintenance of transmembrane ion gradients, membrane potential and cell volume to prevent premature cell death becomes the priority cell function.</description><identifier>ISSN: 1095-6433</identifier><identifier>EISSN: 1531-4332</identifier><identifier>DOI: 10.1016/j.cbpa.2016.07.002</identifier><identifier>PMID: 27399971</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Alanine Transaminase - blood ; Aminotransferases ; Animals ; Aspartate Aminotransferases - blood ; Coumaric Acids - pharmacology ; Cycloheximide - pharmacology ; Female ; Gluconeogenesis - drug effects ; Hepatocytes ; Hepatocytes - drug effects ; Hepatocytes - metabolism ; Lamprey ; Lampreys - metabolism ; Lampreys - physiology ; Membrane Potential, Mitochondrial - drug effects ; Metabolic depression ; Mitochondria, Liver - metabolism ; Mitochondrial membrane potential ; Na+-K+-pump ; Oviposition - physiology ; Phenylpyruvic Acids - pharmacology ; Prespawning starvation ; Protein synthesis ; Protein Synthesis Inhibitors - pharmacology ; Rivers ; Seasons ; Sodium-Potassium-Exchanging ATPase - metabolism ; Starvation - metabolism</subject><ispartof>Comparative biochemistry and physiology. Part A, Molecular &amp; integrative physiology, 2016-11, Vol.201, p.95-100</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-f58538949d0db2803b2416b07e1bf75da4710b9e2dff6dd1b06328055045283c3</citedby><cites>FETCH-LOGICAL-c356t-f58538949d0db2803b2416b07e1bf75da4710b9e2dff6dd1b06328055045283c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cbpa.2016.07.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27399971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agalakova, Natalia I.</creatorcontrib><creatorcontrib>Brailovskaya, Irina V.</creatorcontrib><creatorcontrib>Konovalova, Svetlana A.</creatorcontrib><creatorcontrib>Korotkov, Sergei M.</creatorcontrib><creatorcontrib>Lavrova, Elena A.</creatorcontrib><creatorcontrib>Nikiforov, Anatolii A.</creatorcontrib><title>ATP-consuming processes in hepatocytes of river lamprey Lampetra fluviatilis on the course of prespawning starvation</title><title>Comparative biochemistry and physiology. Part A, Molecular &amp; integrative physiology</title><addtitle>Comp Biochem Physiol A Mol Integr Physiol</addtitle><description>The work was performed to establish which of the major ATP-consuming processes is the most important for surviving of hepatocytes of female lampreys on the course of prespawning starvation. The requirements of protein synthesis and Na+-K+-ATPase for ATP in the cells were monitored by the changes in mitochondrial membrane potential (MMP) in the presence of corresponding inhibitors from the peak of metabolic depression (January–February) to the time of recovery from it (March–April) and spawning (May). Integrity of lamprey liver cells was estimated by catalytic activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in blood plasma. In January–February, the share of ATP necessary for protein synthesis was 20–22%, whereas before spawning it decreased to 8–11%. Functioning of Na+-K+-pump required 22% of cellular ATP at the peak of metabolic depression, but 38% and 62% of ATP in March–April and May, respectively. Progression of prespawning period was accompanied by 3.75- and 1.6-fold rise of ALT and AST activities in blood plasma, respectively, whereas de Ritis coefficient decreased from 2.51±0.34 to 0.81±0.08, what indicates severe damage of hepatocyte membranes. Thus, the adaptive strategy of lamprey hepatocytes to develop metabolic depression under conditions of energy limitation is the selective production of proteins necessary for spawning, most probably vitellogenins. As spawning approaches, the maintenance of transmembrane ion gradients, membrane potential and cell volume to prevent premature cell death becomes the priority cell function.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Alanine Transaminase - blood</subject><subject>Aminotransferases</subject><subject>Animals</subject><subject>Aspartate Aminotransferases - blood</subject><subject>Coumaric Acids - pharmacology</subject><subject>Cycloheximide - pharmacology</subject><subject>Female</subject><subject>Gluconeogenesis - drug effects</subject><subject>Hepatocytes</subject><subject>Hepatocytes - drug effects</subject><subject>Hepatocytes - metabolism</subject><subject>Lamprey</subject><subject>Lampreys - metabolism</subject><subject>Lampreys - physiology</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Metabolic depression</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondrial membrane potential</subject><subject>Na+-K+-pump</subject><subject>Oviposition - physiology</subject><subject>Phenylpyruvic Acids - pharmacology</subject><subject>Prespawning starvation</subject><subject>Protein synthesis</subject><subject>Protein Synthesis Inhibitors - pharmacology</subject><subject>Rivers</subject><subject>Seasons</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Starvation - metabolism</subject><issn>1095-6433</issn><issn>1531-4332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEuP1DAQhC0EYpeFP8AB-cglwc88JC6r1fKQRoLDcrYcu8N6lMTBdgbNv6ejWTjSl-6WviqpipC3nNWc8ebDsXbDamuBd83amjHxjFxzLXmlpBTP8Wa9rhp8rsirnI8MR3H1klyJVvZ93_JrUm4fvlcuLnmbw_KTrik6yBkyDQt9hNWW6M4F3zjSFE6Q6GTnNcGZHnBDSZaO03YKtoQpILXQ8gjUxS1l2DWI5tX-XnbvXGw6IRiX1-TFaKcMb572Dfnx6f7h7kt1-Pb5693toXJSN6Uadadl16veMz-IjslBKN4MrAU-jK32VrWcDT0IP46N93xgjURMa6a06KSTN-T9xRdj_dogFzOH7GCa7AJxy4Z3QmmlUYGouKAuxZwTjGZNYbbpbDgze9vmaPa2zd62Ya3BtlH07sl_G2bw_yR_60Xg4wUATHkKkEx2ARYHPiRwxfgY_uf_B8bHkiU</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Agalakova, Natalia I.</creator><creator>Brailovskaya, Irina V.</creator><creator>Konovalova, Svetlana A.</creator><creator>Korotkov, Sergei M.</creator><creator>Lavrova, Elena A.</creator><creator>Nikiforov, Anatolii A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201611</creationdate><title>ATP-consuming processes in hepatocytes of river lamprey Lampetra fluviatilis on the course of prespawning starvation</title><author>Agalakova, Natalia I. ; Brailovskaya, Irina V. ; Konovalova, Svetlana A. ; Korotkov, Sergei M. ; Lavrova, Elena A. ; Nikiforov, Anatolii A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-f58538949d0db2803b2416b07e1bf75da4710b9e2dff6dd1b06328055045283c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Alanine Transaminase - blood</topic><topic>Aminotransferases</topic><topic>Animals</topic><topic>Aspartate Aminotransferases - blood</topic><topic>Coumaric Acids - pharmacology</topic><topic>Cycloheximide - pharmacology</topic><topic>Female</topic><topic>Gluconeogenesis - drug effects</topic><topic>Hepatocytes</topic><topic>Hepatocytes - drug effects</topic><topic>Hepatocytes - metabolism</topic><topic>Lamprey</topic><topic>Lampreys - metabolism</topic><topic>Lampreys - physiology</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Metabolic depression</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondrial membrane potential</topic><topic>Na+-K+-pump</topic><topic>Oviposition - physiology</topic><topic>Phenylpyruvic Acids - pharmacology</topic><topic>Prespawning starvation</topic><topic>Protein synthesis</topic><topic>Protein Synthesis Inhibitors - pharmacology</topic><topic>Rivers</topic><topic>Seasons</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Starvation - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agalakova, Natalia I.</creatorcontrib><creatorcontrib>Brailovskaya, Irina V.</creatorcontrib><creatorcontrib>Konovalova, Svetlana A.</creatorcontrib><creatorcontrib>Korotkov, Sergei M.</creatorcontrib><creatorcontrib>Lavrova, Elena A.</creatorcontrib><creatorcontrib>Nikiforov, Anatolii A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Comparative biochemistry and physiology. Part A, Molecular &amp; integrative physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agalakova, Natalia I.</au><au>Brailovskaya, Irina V.</au><au>Konovalova, Svetlana A.</au><au>Korotkov, Sergei M.</au><au>Lavrova, Elena A.</au><au>Nikiforov, Anatolii A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATP-consuming processes in hepatocytes of river lamprey Lampetra fluviatilis on the course of prespawning starvation</atitle><jtitle>Comparative biochemistry and physiology. Part A, Molecular &amp; integrative physiology</jtitle><addtitle>Comp Biochem Physiol A Mol Integr Physiol</addtitle><date>2016-11</date><risdate>2016</risdate><volume>201</volume><spage>95</spage><epage>100</epage><pages>95-100</pages><issn>1095-6433</issn><eissn>1531-4332</eissn><abstract>The work was performed to establish which of the major ATP-consuming processes is the most important for surviving of hepatocytes of female lampreys on the course of prespawning starvation. The requirements of protein synthesis and Na+-K+-ATPase for ATP in the cells were monitored by the changes in mitochondrial membrane potential (MMP) in the presence of corresponding inhibitors from the peak of metabolic depression (January–February) to the time of recovery from it (March–April) and spawning (May). Integrity of lamprey liver cells was estimated by catalytic activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in blood plasma. In January–February, the share of ATP necessary for protein synthesis was 20–22%, whereas before spawning it decreased to 8–11%. Functioning of Na+-K+-pump required 22% of cellular ATP at the peak of metabolic depression, but 38% and 62% of ATP in March–April and May, respectively. Progression of prespawning period was accompanied by 3.75- and 1.6-fold rise of ALT and AST activities in blood plasma, respectively, whereas de Ritis coefficient decreased from 2.51±0.34 to 0.81±0.08, what indicates severe damage of hepatocyte membranes. Thus, the adaptive strategy of lamprey hepatocytes to develop metabolic depression under conditions of energy limitation is the selective production of proteins necessary for spawning, most probably vitellogenins. As spawning approaches, the maintenance of transmembrane ion gradients, membrane potential and cell volume to prevent premature cell death becomes the priority cell function.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27399971</pmid><doi>10.1016/j.cbpa.2016.07.002</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1095-6433
ispartof Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 2016-11, Vol.201, p.95-100
issn 1095-6433
1531-4332
language eng
recordid cdi_proquest_miscellaneous_1824545055
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adenosine Triphosphate - metabolism
Alanine Transaminase - blood
Aminotransferases
Animals
Aspartate Aminotransferases - blood
Coumaric Acids - pharmacology
Cycloheximide - pharmacology
Female
Gluconeogenesis - drug effects
Hepatocytes
Hepatocytes - drug effects
Hepatocytes - metabolism
Lamprey
Lampreys - metabolism
Lampreys - physiology
Membrane Potential, Mitochondrial - drug effects
Metabolic depression
Mitochondria, Liver - metabolism
Mitochondrial membrane potential
Na+-K+-pump
Oviposition - physiology
Phenylpyruvic Acids - pharmacology
Prespawning starvation
Protein synthesis
Protein Synthesis Inhibitors - pharmacology
Rivers
Seasons
Sodium-Potassium-Exchanging ATPase - metabolism
Starvation - metabolism
title ATP-consuming processes in hepatocytes of river lamprey Lampetra fluviatilis on the course of prespawning starvation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATP-consuming%20processes%20in%20hepatocytes%20of%20river%20lamprey%20Lampetra%20fluviatilis%20on%20the%20course%20of%20prespawning%20starvation&rft.jtitle=Comparative%20biochemistry%20and%20physiology.%20Part%20A,%20Molecular%20&%20integrative%20physiology&rft.au=Agalakova,%20Natalia%20I.&rft.date=2016-11&rft.volume=201&rft.spage=95&rft.epage=100&rft.pages=95-100&rft.issn=1095-6433&rft.eissn=1531-4332&rft_id=info:doi/10.1016/j.cbpa.2016.07.002&rft_dat=%3Cproquest_cross%3E1824545055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1824545055&rft_id=info:pmid/27399971&rft_els_id=S1095643316301489&rfr_iscdi=true