Using base-specific Salmonella tester strains to characterize the types of mutation induced by benzidine and benzidine congeners after reductive metabolism

Although benzidine (Bz), 4-aminobiphenyl (ABP), 3,3′-dichlorobenzidine HCl (DCBz), 3,3′-dimethylbenzidine (DMBz), 3,3′-dimethoxybenzidine (DMOBz) and the benzidine congener-based dye trypan blue (TB) produce primarily frameshift mutations in Salmonella typhimurium, the base-substitution strain TA100...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food and chemical toxicology 2001-12, Vol.39 (12), p.1253-1261
Hauptverfasser: Claxton, L.D, Hughes, T.J, Chung, K.-T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1261
container_issue 12
container_start_page 1253
container_title Food and chemical toxicology
container_volume 39
creator Claxton, L.D
Hughes, T.J
Chung, K.-T
description Although benzidine (Bz), 4-aminobiphenyl (ABP), 3,3′-dichlorobenzidine HCl (DCBz), 3,3′-dimethylbenzidine (DMBz), 3,3′-dimethoxybenzidine (DMOBz) and the benzidine congener-based dye trypan blue (TB) produce primarily frameshift mutations in Salmonella typhimurium, the base-substitution strain TA100 also responds to these compounds when S9 is present. Performing DNA sequence analysis, other investigators have shown that ABP induces frameshift, base-pair and complex mutations. Also, it was found that an uninduced hamster liver S9 preparation with glucose-6-phosphate dehydrogenase, FMN, NADH and four times glucose 6-phosphate gave a stronger mutagenic response than the conventional plate incorporation with rat S9 activation mixture for all the compounds tested. Using the base-specific tester strains of S. typhimurium (TA7001–TA7006) with the above reductive metabolic activation system, we surveyed these compounds for the ability to produce specific base-pair substitutions after reductive metabolism. Bz was weakly mutagenic in TA7005 (0.04 revertants/μg). ABP was mutagenic in TA7002 (1.4 revertants/μg), TA7004 (0.6 revertants/μg), TA7005 (2.98 revertants/μg) and TA7006 (0.4 revertants/μg). DCBz was weakly mutagenic in TA7004 (0.01 revertants/μg). It was concluded that benzidine induced some CG->AT transversions in addition to frameshift mutations. ABP induced TA->AT, CG->AT, and CG->GC transversions as well as GC->AT transitions. DCBz induced only GC->AT transitions. Because DMBz, DMOBz and TB were not mutagenic in this base-substitution mutagen detection system, their mutagenic activity was attributed strictly to frameshift mechanisms.
doi_str_mv 10.1016/S0278-6915(01)00072-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18241610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0278691501000722</els_id><sourcerecordid>18241610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-db52980efdf626b7938cb38237c1902aa64d17ac84fc699b28ec8ff4ac7f04a13</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EokvhEUC-gOAQ8DhZxzlVqOKfVIlD6dmaOOPWKLEX26m0fRVelqS7otw4WJZHv88z832MvQTxHgSoD5dCtrpSHWzfCngnhGhlJR-xDei2rlS9hcds8xc5Yc9y_rlC0Kqn7ARAdaruug37fZV9uOY9Zqryjqx33vJLHKcYaByRF8qFEs8loQ-Zl8jtDSa0S9HfES83y9nvKPPo-DQXLD4G7sMwWxp4v-c9hTs_-EAcw_DPy8ZwTYFS5ujWBokWSfG3xCcq2MfR5-k5e-JwzPTieJ-yq8-ffpx_rS6-f_l2_vGiso2UpRr6rey0IDc4JVXfdrW2fa1l3VrohERUzQAtWt04q7qul5qsdq5B2zrRINSn7M3h312Kv-ZlYTP5bNf1A8U5G9CyAQViAbcH0KaYcyJndslPmPYGhFlTMfepmNVyI8Dcp2Lkont1bDD3Ew0PqmMMC_D6CGC2OLqEwfr8wDWi1RrWSc8OHC123HpKJltPYfHaJ7LFDNH_Z5Q_5pytoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18241610</pqid></control><display><type>article</type><title>Using base-specific Salmonella tester strains to characterize the types of mutation induced by benzidine and benzidine congeners after reductive metabolism</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Claxton, L.D ; Hughes, T.J ; Chung, K.-T</creator><creatorcontrib>Claxton, L.D ; Hughes, T.J ; Chung, K.-T</creatorcontrib><description>Although benzidine (Bz), 4-aminobiphenyl (ABP), 3,3′-dichlorobenzidine HCl (DCBz), 3,3′-dimethylbenzidine (DMBz), 3,3′-dimethoxybenzidine (DMOBz) and the benzidine congener-based dye trypan blue (TB) produce primarily frameshift mutations in Salmonella typhimurium, the base-substitution strain TA100 also responds to these compounds when S9 is present. Performing DNA sequence analysis, other investigators have shown that ABP induces frameshift, base-pair and complex mutations. Also, it was found that an uninduced hamster liver S9 preparation with glucose-6-phosphate dehydrogenase, FMN, NADH and four times glucose 6-phosphate gave a stronger mutagenic response than the conventional plate incorporation with rat S9 activation mixture for all the compounds tested. Using the base-specific tester strains of S. typhimurium (TA7001–TA7006) with the above reductive metabolic activation system, we surveyed these compounds for the ability to produce specific base-pair substitutions after reductive metabolism. Bz was weakly mutagenic in TA7005 (0.04 revertants/μg). ABP was mutagenic in TA7002 (1.4 revertants/μg), TA7004 (0.6 revertants/μg), TA7005 (2.98 revertants/μg) and TA7006 (0.4 revertants/μg). DCBz was weakly mutagenic in TA7004 (0.01 revertants/μg). It was concluded that benzidine induced some CG-&gt;AT transversions in addition to frameshift mutations. ABP induced TA-&gt;AT, CG-&gt;AT, and CG-&gt;GC transversions as well as GC-&gt;AT transitions. DCBz induced only GC-&gt;AT transitions. Because DMBz, DMOBz and TB were not mutagenic in this base-substitution mutagen detection system, their mutagenic activity was attributed strictly to frameshift mechanisms.</description><identifier>ISSN: 0278-6915</identifier><identifier>EISSN: 1873-6351</identifier><identifier>DOI: 10.1016/S0278-6915(01)00072-2</identifier><identifier>PMID: 11696399</identifier><identifier>CODEN: FCTOD7</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>3,3'-Dichlorobenzidine - metabolism ; 3,3'-Dichlorobenzidine - toxicity ; 3,3′-dichlorobenzidine (91-94-1) ; 3,3′-dimethoxybenzidine (119-90-4) ; 3,3′-dimethylbenzidine (119-93-7) ; 4-aminobiphenyl (92-67-1) ; Aminobiphenyl Compounds - metabolism ; Aminobiphenyl Compounds - toxicity ; benzidine ; Benzidine (92-87-5) ; Benzidines - toxicity ; Biological and medical sciences ; Carcinogens ; Chemical and industrial products toxicology. Toxic occupational diseases ; Dianisidine - metabolism ; Dianisidine - toxicity ; DNA, Bacterial - drug effects ; Dyes ; Frameshift Mutation ; Genes, Bacterial - drug effects ; Medical sciences ; Mutagenicity Tests ; Mutagens - toxicity ; Mutational spectra ; Reductive metabolism ; Salmonella typhimurium ; Salmonella typhimurium - drug effects ; Salmonella typhimurium - genetics ; Toxicology ; Trypan blue (72-57-1) ; Various organic compounds</subject><ispartof>Food and chemical toxicology, 2001-12, Vol.39 (12), p.1253-1261</ispartof><rights>2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-db52980efdf626b7938cb38237c1902aa64d17ac84fc699b28ec8ff4ac7f04a13</citedby><cites>FETCH-LOGICAL-c422t-db52980efdf626b7938cb38237c1902aa64d17ac84fc699b28ec8ff4ac7f04a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0278691501000722$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14078811$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11696399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Claxton, L.D</creatorcontrib><creatorcontrib>Hughes, T.J</creatorcontrib><creatorcontrib>Chung, K.-T</creatorcontrib><title>Using base-specific Salmonella tester strains to characterize the types of mutation induced by benzidine and benzidine congeners after reductive metabolism</title><title>Food and chemical toxicology</title><addtitle>Food Chem Toxicol</addtitle><description>Although benzidine (Bz), 4-aminobiphenyl (ABP), 3,3′-dichlorobenzidine HCl (DCBz), 3,3′-dimethylbenzidine (DMBz), 3,3′-dimethoxybenzidine (DMOBz) and the benzidine congener-based dye trypan blue (TB) produce primarily frameshift mutations in Salmonella typhimurium, the base-substitution strain TA100 also responds to these compounds when S9 is present. Performing DNA sequence analysis, other investigators have shown that ABP induces frameshift, base-pair and complex mutations. Also, it was found that an uninduced hamster liver S9 preparation with glucose-6-phosphate dehydrogenase, FMN, NADH and four times glucose 6-phosphate gave a stronger mutagenic response than the conventional plate incorporation with rat S9 activation mixture for all the compounds tested. Using the base-specific tester strains of S. typhimurium (TA7001–TA7006) with the above reductive metabolic activation system, we surveyed these compounds for the ability to produce specific base-pair substitutions after reductive metabolism. Bz was weakly mutagenic in TA7005 (0.04 revertants/μg). ABP was mutagenic in TA7002 (1.4 revertants/μg), TA7004 (0.6 revertants/μg), TA7005 (2.98 revertants/μg) and TA7006 (0.4 revertants/μg). DCBz was weakly mutagenic in TA7004 (0.01 revertants/μg). It was concluded that benzidine induced some CG-&gt;AT transversions in addition to frameshift mutations. ABP induced TA-&gt;AT, CG-&gt;AT, and CG-&gt;GC transversions as well as GC-&gt;AT transitions. DCBz induced only GC-&gt;AT transitions. Because DMBz, DMOBz and TB were not mutagenic in this base-substitution mutagen detection system, their mutagenic activity was attributed strictly to frameshift mechanisms.</description><subject>3,3'-Dichlorobenzidine - metabolism</subject><subject>3,3'-Dichlorobenzidine - toxicity</subject><subject>3,3′-dichlorobenzidine (91-94-1)</subject><subject>3,3′-dimethoxybenzidine (119-90-4)</subject><subject>3,3′-dimethylbenzidine (119-93-7)</subject><subject>4-aminobiphenyl (92-67-1)</subject><subject>Aminobiphenyl Compounds - metabolism</subject><subject>Aminobiphenyl Compounds - toxicity</subject><subject>benzidine</subject><subject>Benzidine (92-87-5)</subject><subject>Benzidines - toxicity</subject><subject>Biological and medical sciences</subject><subject>Carcinogens</subject><subject>Chemical and industrial products toxicology. Toxic occupational diseases</subject><subject>Dianisidine - metabolism</subject><subject>Dianisidine - toxicity</subject><subject>DNA, Bacterial - drug effects</subject><subject>Dyes</subject><subject>Frameshift Mutation</subject><subject>Genes, Bacterial - drug effects</subject><subject>Medical sciences</subject><subject>Mutagenicity Tests</subject><subject>Mutagens - toxicity</subject><subject>Mutational spectra</subject><subject>Reductive metabolism</subject><subject>Salmonella typhimurium</subject><subject>Salmonella typhimurium - drug effects</subject><subject>Salmonella typhimurium - genetics</subject><subject>Toxicology</subject><subject>Trypan blue (72-57-1)</subject><subject>Various organic compounds</subject><issn>0278-6915</issn><issn>1873-6351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxi0EokvhEUC-gOAQ8DhZxzlVqOKfVIlD6dmaOOPWKLEX26m0fRVelqS7otw4WJZHv88z832MvQTxHgSoD5dCtrpSHWzfCngnhGhlJR-xDei2rlS9hcds8xc5Yc9y_rlC0Kqn7ARAdaruug37fZV9uOY9Zqryjqx33vJLHKcYaByRF8qFEs8loQ-Zl8jtDSa0S9HfES83y9nvKPPo-DQXLD4G7sMwWxp4v-c9hTs_-EAcw_DPy8ZwTYFS5ujWBokWSfG3xCcq2MfR5-k5e-JwzPTieJ-yq8-ffpx_rS6-f_l2_vGiso2UpRr6rey0IDc4JVXfdrW2fa1l3VrohERUzQAtWt04q7qul5qsdq5B2zrRINSn7M3h312Kv-ZlYTP5bNf1A8U5G9CyAQViAbcH0KaYcyJndslPmPYGhFlTMfepmNVyI8Dcp2Lkont1bDD3Ew0PqmMMC_D6CGC2OLqEwfr8wDWi1RrWSc8OHC123HpKJltPYfHaJ7LFDNH_Z5Q_5pytoA</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Claxton, L.D</creator><creator>Hughes, T.J</creator><creator>Chung, K.-T</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20011201</creationdate><title>Using base-specific Salmonella tester strains to characterize the types of mutation induced by benzidine and benzidine congeners after reductive metabolism</title><author>Claxton, L.D ; Hughes, T.J ; Chung, K.-T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-db52980efdf626b7938cb38237c1902aa64d17ac84fc699b28ec8ff4ac7f04a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>3,3'-Dichlorobenzidine - metabolism</topic><topic>3,3'-Dichlorobenzidine - toxicity</topic><topic>3,3′-dichlorobenzidine (91-94-1)</topic><topic>3,3′-dimethoxybenzidine (119-90-4)</topic><topic>3,3′-dimethylbenzidine (119-93-7)</topic><topic>4-aminobiphenyl (92-67-1)</topic><topic>Aminobiphenyl Compounds - metabolism</topic><topic>Aminobiphenyl Compounds - toxicity</topic><topic>benzidine</topic><topic>Benzidine (92-87-5)</topic><topic>Benzidines - toxicity</topic><topic>Biological and medical sciences</topic><topic>Carcinogens</topic><topic>Chemical and industrial products toxicology. Toxic occupational diseases</topic><topic>Dianisidine - metabolism</topic><topic>Dianisidine - toxicity</topic><topic>DNA, Bacterial - drug effects</topic><topic>Dyes</topic><topic>Frameshift Mutation</topic><topic>Genes, Bacterial - drug effects</topic><topic>Medical sciences</topic><topic>Mutagenicity Tests</topic><topic>Mutagens - toxicity</topic><topic>Mutational spectra</topic><topic>Reductive metabolism</topic><topic>Salmonella typhimurium</topic><topic>Salmonella typhimurium - drug effects</topic><topic>Salmonella typhimurium - genetics</topic><topic>Toxicology</topic><topic>Trypan blue (72-57-1)</topic><topic>Various organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Claxton, L.D</creatorcontrib><creatorcontrib>Hughes, T.J</creatorcontrib><creatorcontrib>Chung, K.-T</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Food and chemical toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Claxton, L.D</au><au>Hughes, T.J</au><au>Chung, K.-T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using base-specific Salmonella tester strains to characterize the types of mutation induced by benzidine and benzidine congeners after reductive metabolism</atitle><jtitle>Food and chemical toxicology</jtitle><addtitle>Food Chem Toxicol</addtitle><date>2001-12-01</date><risdate>2001</risdate><volume>39</volume><issue>12</issue><spage>1253</spage><epage>1261</epage><pages>1253-1261</pages><issn>0278-6915</issn><eissn>1873-6351</eissn><coden>FCTOD7</coden><abstract>Although benzidine (Bz), 4-aminobiphenyl (ABP), 3,3′-dichlorobenzidine HCl (DCBz), 3,3′-dimethylbenzidine (DMBz), 3,3′-dimethoxybenzidine (DMOBz) and the benzidine congener-based dye trypan blue (TB) produce primarily frameshift mutations in Salmonella typhimurium, the base-substitution strain TA100 also responds to these compounds when S9 is present. Performing DNA sequence analysis, other investigators have shown that ABP induces frameshift, base-pair and complex mutations. Also, it was found that an uninduced hamster liver S9 preparation with glucose-6-phosphate dehydrogenase, FMN, NADH and four times glucose 6-phosphate gave a stronger mutagenic response than the conventional plate incorporation with rat S9 activation mixture for all the compounds tested. Using the base-specific tester strains of S. typhimurium (TA7001–TA7006) with the above reductive metabolic activation system, we surveyed these compounds for the ability to produce specific base-pair substitutions after reductive metabolism. Bz was weakly mutagenic in TA7005 (0.04 revertants/μg). ABP was mutagenic in TA7002 (1.4 revertants/μg), TA7004 (0.6 revertants/μg), TA7005 (2.98 revertants/μg) and TA7006 (0.4 revertants/μg). DCBz was weakly mutagenic in TA7004 (0.01 revertants/μg). It was concluded that benzidine induced some CG-&gt;AT transversions in addition to frameshift mutations. ABP induced TA-&gt;AT, CG-&gt;AT, and CG-&gt;GC transversions as well as GC-&gt;AT transitions. DCBz induced only GC-&gt;AT transitions. Because DMBz, DMOBz and TB were not mutagenic in this base-substitution mutagen detection system, their mutagenic activity was attributed strictly to frameshift mechanisms.</abstract><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><pmid>11696399</pmid><doi>10.1016/S0278-6915(01)00072-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-6915
ispartof Food and chemical toxicology, 2001-12, Vol.39 (12), p.1253-1261
issn 0278-6915
1873-6351
language eng
recordid cdi_proquest_miscellaneous_18241610
source MEDLINE; Elsevier ScienceDirect Journals
subjects 3,3'-Dichlorobenzidine - metabolism
3,3'-Dichlorobenzidine - toxicity
3,3′-dichlorobenzidine (91-94-1)
3,3′-dimethoxybenzidine (119-90-4)
3,3′-dimethylbenzidine (119-93-7)
4-aminobiphenyl (92-67-1)
Aminobiphenyl Compounds - metabolism
Aminobiphenyl Compounds - toxicity
benzidine
Benzidine (92-87-5)
Benzidines - toxicity
Biological and medical sciences
Carcinogens
Chemical and industrial products toxicology. Toxic occupational diseases
Dianisidine - metabolism
Dianisidine - toxicity
DNA, Bacterial - drug effects
Dyes
Frameshift Mutation
Genes, Bacterial - drug effects
Medical sciences
Mutagenicity Tests
Mutagens - toxicity
Mutational spectra
Reductive metabolism
Salmonella typhimurium
Salmonella typhimurium - drug effects
Salmonella typhimurium - genetics
Toxicology
Trypan blue (72-57-1)
Various organic compounds
title Using base-specific Salmonella tester strains to characterize the types of mutation induced by benzidine and benzidine congeners after reductive metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20base-specific%20Salmonella%20tester%20strains%20to%20characterize%20the%20types%20of%20mutation%20induced%20by%20benzidine%20and%20benzidine%20congeners%20after%20reductive%20metabolism&rft.jtitle=Food%20and%20chemical%20toxicology&rft.au=Claxton,%20L.D&rft.date=2001-12-01&rft.volume=39&rft.issue=12&rft.spage=1253&rft.epage=1261&rft.pages=1253-1261&rft.issn=0278-6915&rft.eissn=1873-6351&rft.coden=FCTOD7&rft_id=info:doi/10.1016/S0278-6915(01)00072-2&rft_dat=%3Cproquest_cross%3E18241610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18241610&rft_id=info:pmid/11696399&rft_els_id=S0278691501000722&rfr_iscdi=true