Reconstruction of brain neuronal pathways in brain from the diffusion tensor MRI data

MRI based fiber tracking is a diagnostic method based on the diffusion tensor MRI data, which allows to find pathways of neuronal bundles in brain in vivo. In this work we propose a method of neuronal pathways reconstruction using A-star algorithm, with the possibility to assess its the effectivenes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2012-01, Vol.394 (1), p.1-5
Hauptverfasser: Nasretdinov, A R, Il'yasov, K A, Nedopekin, O V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 1
container_start_page 1
container_title Journal of physics. Conference series
container_volume 394
creator Nasretdinov, A R
Il'yasov, K A
Nedopekin, O V
description MRI based fiber tracking is a diagnostic method based on the diffusion tensor MRI data, which allows to find pathways of neuronal bundles in brain in vivo. In this work we propose a method of neuronal pathways reconstruction using A-star algorithm, with the possibility to assess its the effectiveness. One of the criteria is the probabilistic search parameter G, defined by a set of diffusion coefficients in a given volume element. The parameter G obtained trajectory correlated to its length has the meaning of entropy and allows to assess reliability of the found path. The proposed method was tested on simulated data with the characteristic behavior of trajectories of the complex variations, different cases of intersection of the beams passing through the intersection without a common voxels, and obtained characteristics of the corresponding probability.
doi_str_mv 10.1088/1742-6596/394/1/012032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1823941199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718953651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-f67b8a025a25392d75e83ba6e53b9b68721098630daa5d78c887dfb28947055a3</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWKt_QQJevKybj83XUYpfUBGKPYfsbkK3bDc1ySL992ap9ODFucww88zL8A4Atxg9YCRliUVFCs4UL6mqSlwiTBAlZ2B2GpyfaikvwVWMW4RoDjED65Vt_BBTGJvU-QF6B-tgugEOdgx-MD3cm7T5NocIc_M4csHvYNpY2HbOjXFaS3aIPsD31RtsTTLX4MKZPtqb3zwH6-enz8Vrsfx4eVs8LouGVlUqHBe1NIgwQxhVpBXMSlobbhmtVc2lIBgpySlqjWGtkI2UonU1kaoSiDFD5-D-qLsP_mu0MeldFxvb92awfowaS5I9wVip_1GBpWKUM5zRuz_o1o8hexE1YUKSima9TPEj1QQfY7BO70O3M-GgMdLTY_TkuZ781_kIjfXxMfQHaBl_Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578243993</pqid></control><display><type>article</type><title>Reconstruction of brain neuronal pathways in brain from the diffusion tensor MRI data</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nasretdinov, A R ; Il'yasov, K A ; Nedopekin, O V</creator><creatorcontrib>Nasretdinov, A R ; Il'yasov, K A ; Nedopekin, O V</creatorcontrib><description>MRI based fiber tracking is a diagnostic method based on the diffusion tensor MRI data, which allows to find pathways of neuronal bundles in brain in vivo. In this work we propose a method of neuronal pathways reconstruction using A-star algorithm, with the possibility to assess its the effectiveness. One of the criteria is the probabilistic search parameter G, defined by a set of diffusion coefficients in a given volume element. The parameter G obtained trajectory correlated to its length has the meaning of entropy and allows to assess reliability of the found path. The proposed method was tested on simulated data with the characteristic behavior of trajectories of the complex variations, different cases of intersection of the beams passing through the intersection without a common voxels, and obtained characteristics of the corresponding probability.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/394/1/012032</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Brain ; Diffusion ; In vivo methods and tests ; Intersections ; Mathematical analysis ; Parameters ; Pathways ; Physics ; Reconstruction ; Reliability analysis ; Statistical analysis ; Tensors ; Trajectories</subject><ispartof>Journal of physics. Conference series, 2012-01, Vol.394 (1), p.1-5</ispartof><rights>Copyright IOP Publishing Nov 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-f67b8a025a25392d75e83ba6e53b9b68721098630daa5d78c887dfb28947055a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nasretdinov, A R</creatorcontrib><creatorcontrib>Il'yasov, K A</creatorcontrib><creatorcontrib>Nedopekin, O V</creatorcontrib><title>Reconstruction of brain neuronal pathways in brain from the diffusion tensor MRI data</title><title>Journal of physics. Conference series</title><description>MRI based fiber tracking is a diagnostic method based on the diffusion tensor MRI data, which allows to find pathways of neuronal bundles in brain in vivo. In this work we propose a method of neuronal pathways reconstruction using A-star algorithm, with the possibility to assess its the effectiveness. One of the criteria is the probabilistic search parameter G, defined by a set of diffusion coefficients in a given volume element. The parameter G obtained trajectory correlated to its length has the meaning of entropy and allows to assess reliability of the found path. The proposed method was tested on simulated data with the characteristic behavior of trajectories of the complex variations, different cases of intersection of the beams passing through the intersection without a common voxels, and obtained characteristics of the corresponding probability.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Diffusion</subject><subject>In vivo methods and tests</subject><subject>Intersections</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>Pathways</subject><subject>Physics</subject><subject>Reconstruction</subject><subject>Reliability analysis</subject><subject>Statistical analysis</subject><subject>Tensors</subject><subject>Trajectories</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkU1LAzEQhoMoWKt_QQJevKybj83XUYpfUBGKPYfsbkK3bDc1ySL992ap9ODFucww88zL8A4Atxg9YCRliUVFCs4UL6mqSlwiTBAlZ2B2GpyfaikvwVWMW4RoDjED65Vt_BBTGJvU-QF6B-tgugEOdgx-MD3cm7T5NocIc_M4csHvYNpY2HbOjXFaS3aIPsD31RtsTTLX4MKZPtqb3zwH6-enz8Vrsfx4eVs8LouGVlUqHBe1NIgwQxhVpBXMSlobbhmtVc2lIBgpySlqjWGtkI2UonU1kaoSiDFD5-D-qLsP_mu0MeldFxvb92awfowaS5I9wVip_1GBpWKUM5zRuz_o1o8hexE1YUKSima9TPEj1QQfY7BO70O3M-GgMdLTY_TkuZ781_kIjfXxMfQHaBl_Rw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Nasretdinov, A R</creator><creator>Il'yasov, K A</creator><creator>Nedopekin, O V</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7SC</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120101</creationdate><title>Reconstruction of brain neuronal pathways in brain from the diffusion tensor MRI data</title><author>Nasretdinov, A R ; Il'yasov, K A ; Nedopekin, O V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-f67b8a025a25392d75e83ba6e53b9b68721098630daa5d78c887dfb28947055a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Diffusion</topic><topic>In vivo methods and tests</topic><topic>Intersections</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>Pathways</topic><topic>Physics</topic><topic>Reconstruction</topic><topic>Reliability analysis</topic><topic>Statistical analysis</topic><topic>Tensors</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasretdinov, A R</creatorcontrib><creatorcontrib>Il'yasov, K A</creatorcontrib><creatorcontrib>Nedopekin, O V</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasretdinov, A R</au><au>Il'yasov, K A</au><au>Nedopekin, O V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of brain neuronal pathways in brain from the diffusion tensor MRI data</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>394</volume><issue>1</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>MRI based fiber tracking is a diagnostic method based on the diffusion tensor MRI data, which allows to find pathways of neuronal bundles in brain in vivo. In this work we propose a method of neuronal pathways reconstruction using A-star algorithm, with the possibility to assess its the effectiveness. One of the criteria is the probabilistic search parameter G, defined by a set of diffusion coefficients in a given volume element. The parameter G obtained trajectory correlated to its length has the meaning of entropy and allows to assess reliability of the found path. The proposed method was tested on simulated data with the characteristic behavior of trajectories of the complex variations, different cases of intersection of the beams passing through the intersection without a common voxels, and obtained characteristics of the corresponding probability.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/394/1/012032</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2012-01, Vol.394 (1), p.1-5
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1823941199
source Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Brain
Diffusion
In vivo methods and tests
Intersections
Mathematical analysis
Parameters
Pathways
Physics
Reconstruction
Reliability analysis
Statistical analysis
Tensors
Trajectories
title Reconstruction of brain neuronal pathways in brain from the diffusion tensor MRI data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20brain%20neuronal%20pathways%20in%20brain%20from%20the%20diffusion%20tensor%20MRI%20data&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Nasretdinov,%20A%20R&rft.date=2012-01-01&rft.volume=394&rft.issue=1&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/394/1/012032&rft_dat=%3Cproquest_cross%3E1718953651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578243993&rft_id=info:pmid/&rfr_iscdi=true