Bioinspired multiobjective synthesis of X-band FSS via general regression neural network and cuckoo search algorithm

ABSTRACT A bioinspired hybrid multiobjective optimization technique that associates a general regression neural network and a cuckoo search algorithm is proposed for microwave applications. This study is focused on the simulation, design, and synthesis of frequency selective surfaces (FSSs) with tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microwave and optical technology letters 2015-10, Vol.57 (10), p.2400-2405
Hauptverfasser: Neto, M. C. Alcantara, Araújo, J. P. L., Barros, F. J. B., Silva, A. N., Cavalcante, G. P. S., D'Assunção, A. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2405
container_issue 10
container_start_page 2400
container_title Microwave and optical technology letters
container_volume 57
creator Neto, M. C. Alcantara
Araújo, J. P. L.
Barros, F. J. B.
Silva, A. N.
Cavalcante, G. P. S.
D'Assunção, A. G.
description ABSTRACT A bioinspired hybrid multiobjective optimization technique that associates a general regression neural network and a cuckoo search algorithm is proposed for microwave applications. This study is focused on the simulation, design, and synthesis of frequency selective surfaces (FSSs) with triangular ring patch elements printed on fiberglass substrates (FR4). The proposed technique aims, for example, to design FSSs with specific values for the resonance frequency and bandwidth in the frequency range from 8 to 12 GHz. For validation purpose, a bandstop FSS filter, centered at 11 GHz and with a 4 GHz bandwidth, was synthesized, fabricated, and measured. Good agreement between simulated and measured results is reported. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:2400–2405, 2015
doi_str_mv 10.1002/mop.29349
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1823941049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3762066931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4019-6e182d97bbe2ba524c63cf0e233d940a3bf8c8e47f0db08aa6d235debec1fb993</originalsourceid><addsrcrecordid>eNqN0U9v0zAYBnALgUQZHPgGlrjAIZv_JY6PbNrWibKhDQQ3y3betG4Tu9jJRr_9UgockJA4WXr1e17p9YPQa0qOKSHspI_bY6a4UE_QjBJVF0xW5CmakVqVBRNSPkcvcl4TQriUbIaGUx99yFufoMH92A0-2jW4wd8DzrswrCD7jGOLvxXWhAZf3N3he2_wEgIk0-EEywQ5-xhwgHE_CTA8xLTBe-1Gt4kRZzDJrbDpljH5YdW_RM9a02V49es9Ql8uzj-fzYvFzeXV2ftF4QShqqiA1qxR0lpg1pRMuIq7lgDjvFGCGG7b2tUgZEsaS2pjqobxsgELjrZWKX6E3h72blP8PkIedO-zg64zAeKY9bSeK0GJ-A8qaa1ERWg10Td_0XUcU5gO0bRSqpy-lrBJvTsol2LOCVq9Tb43aacp0fuq9FSV_lnVZE8O9sF3sPs31B9vPv1OFIeEzwP8-JMwaaMryWWpv15f6tu5_LC4vZ7rU_4IgsmmWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699500302</pqid></control><display><type>article</type><title>Bioinspired multiobjective synthesis of X-band FSS via general regression neural network and cuckoo search algorithm</title><source>Access via Wiley Online Library</source><creator>Neto, M. C. Alcantara ; Araújo, J. P. L. ; Barros, F. J. B. ; Silva, A. N. ; Cavalcante, G. P. S. ; D'Assunção, A. G.</creator><creatorcontrib>Neto, M. C. Alcantara ; Araújo, J. P. L. ; Barros, F. J. B. ; Silva, A. N. ; Cavalcante, G. P. S. ; D'Assunção, A. G.</creatorcontrib><description>ABSTRACT A bioinspired hybrid multiobjective optimization technique that associates a general regression neural network and a cuckoo search algorithm is proposed for microwave applications. This study is focused on the simulation, design, and synthesis of frequency selective surfaces (FSSs) with triangular ring patch elements printed on fiberglass substrates (FR4). The proposed technique aims, for example, to design FSSs with specific values for the resonance frequency and bandwidth in the frequency range from 8 to 12 GHz. For validation purpose, a bandstop FSS filter, centered at 11 GHz and with a 4 GHz bandwidth, was synthesized, fabricated, and measured. Good agreement between simulated and measured results is reported. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:2400–2405, 2015</description><identifier>ISSN: 0895-2477</identifier><identifier>EISSN: 1098-2760</identifier><identifier>DOI: 10.1002/mop.29349</identifier><identifier>CODEN: MOTLEO</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Bandwidth ; bioinspired computing ; Computer simulation ; frequency selective surface ; general regression neural network ; General regression neural networks ; Microwaves ; multiobjective cuckoo search ; Optimization ; Search algorithms ; Synthesis ; X-band</subject><ispartof>Microwave and optical technology letters, 2015-10, Vol.57 (10), p.2400-2405</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4019-6e182d97bbe2ba524c63cf0e233d940a3bf8c8e47f0db08aa6d235debec1fb993</citedby><cites>FETCH-LOGICAL-c4019-6e182d97bbe2ba524c63cf0e233d940a3bf8c8e47f0db08aa6d235debec1fb993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmop.29349$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmop.29349$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Neto, M. C. Alcantara</creatorcontrib><creatorcontrib>Araújo, J. P. L.</creatorcontrib><creatorcontrib>Barros, F. J. B.</creatorcontrib><creatorcontrib>Silva, A. N.</creatorcontrib><creatorcontrib>Cavalcante, G. P. S.</creatorcontrib><creatorcontrib>D'Assunção, A. G.</creatorcontrib><title>Bioinspired multiobjective synthesis of X-band FSS via general regression neural network and cuckoo search algorithm</title><title>Microwave and optical technology letters</title><addtitle>Microw. Opt. Technol. Lett</addtitle><description>ABSTRACT A bioinspired hybrid multiobjective optimization technique that associates a general regression neural network and a cuckoo search algorithm is proposed for microwave applications. This study is focused on the simulation, design, and synthesis of frequency selective surfaces (FSSs) with triangular ring patch elements printed on fiberglass substrates (FR4). The proposed technique aims, for example, to design FSSs with specific values for the resonance frequency and bandwidth in the frequency range from 8 to 12 GHz. For validation purpose, a bandstop FSS filter, centered at 11 GHz and with a 4 GHz bandwidth, was synthesized, fabricated, and measured. Good agreement between simulated and measured results is reported. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:2400–2405, 2015</description><subject>Bandwidth</subject><subject>bioinspired computing</subject><subject>Computer simulation</subject><subject>frequency selective surface</subject><subject>general regression neural network</subject><subject>General regression neural networks</subject><subject>Microwaves</subject><subject>multiobjective cuckoo search</subject><subject>Optimization</subject><subject>Search algorithms</subject><subject>Synthesis</subject><subject>X-band</subject><issn>0895-2477</issn><issn>1098-2760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0U9v0zAYBnALgUQZHPgGlrjAIZv_JY6PbNrWibKhDQQ3y3betG4Tu9jJRr_9UgockJA4WXr1e17p9YPQa0qOKSHspI_bY6a4UE_QjBJVF0xW5CmakVqVBRNSPkcvcl4TQriUbIaGUx99yFufoMH92A0-2jW4wd8DzrswrCD7jGOLvxXWhAZf3N3he2_wEgIk0-EEywQ5-xhwgHE_CTA8xLTBe-1Gt4kRZzDJrbDpljH5YdW_RM9a02V49es9Ql8uzj-fzYvFzeXV2ftF4QShqqiA1qxR0lpg1pRMuIq7lgDjvFGCGG7b2tUgZEsaS2pjqobxsgELjrZWKX6E3h72blP8PkIedO-zg64zAeKY9bSeK0GJ-A8qaa1ERWg10Td_0XUcU5gO0bRSqpy-lrBJvTsol2LOCVq9Tb43aacp0fuq9FSV_lnVZE8O9sF3sPs31B9vPv1OFIeEzwP8-JMwaaMryWWpv15f6tu5_LC4vZ7rU_4IgsmmWA</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Neto, M. C. Alcantara</creator><creator>Araújo, J. P. L.</creator><creator>Barros, F. J. B.</creator><creator>Silva, A. N.</creator><creator>Cavalcante, G. P. S.</creator><creator>D'Assunção, A. G.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201510</creationdate><title>Bioinspired multiobjective synthesis of X-band FSS via general regression neural network and cuckoo search algorithm</title><author>Neto, M. C. Alcantara ; Araújo, J. P. L. ; Barros, F. J. B. ; Silva, A. N. ; Cavalcante, G. P. S. ; D'Assunção, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4019-6e182d97bbe2ba524c63cf0e233d940a3bf8c8e47f0db08aa6d235debec1fb993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bandwidth</topic><topic>bioinspired computing</topic><topic>Computer simulation</topic><topic>frequency selective surface</topic><topic>general regression neural network</topic><topic>General regression neural networks</topic><topic>Microwaves</topic><topic>multiobjective cuckoo search</topic><topic>Optimization</topic><topic>Search algorithms</topic><topic>Synthesis</topic><topic>X-band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neto, M. C. Alcantara</creatorcontrib><creatorcontrib>Araújo, J. P. L.</creatorcontrib><creatorcontrib>Barros, F. J. B.</creatorcontrib><creatorcontrib>Silva, A. N.</creatorcontrib><creatorcontrib>Cavalcante, G. P. S.</creatorcontrib><creatorcontrib>D'Assunção, A. G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Microwave and optical technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neto, M. C. Alcantara</au><au>Araújo, J. P. L.</au><au>Barros, F. J. B.</au><au>Silva, A. N.</au><au>Cavalcante, G. P. S.</au><au>D'Assunção, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinspired multiobjective synthesis of X-band FSS via general regression neural network and cuckoo search algorithm</atitle><jtitle>Microwave and optical technology letters</jtitle><addtitle>Microw. Opt. Technol. Lett</addtitle><date>2015-10</date><risdate>2015</risdate><volume>57</volume><issue>10</issue><spage>2400</spage><epage>2405</epage><pages>2400-2405</pages><issn>0895-2477</issn><eissn>1098-2760</eissn><coden>MOTLEO</coden><abstract>ABSTRACT A bioinspired hybrid multiobjective optimization technique that associates a general regression neural network and a cuckoo search algorithm is proposed for microwave applications. This study is focused on the simulation, design, and synthesis of frequency selective surfaces (FSSs) with triangular ring patch elements printed on fiberglass substrates (FR4). The proposed technique aims, for example, to design FSSs with specific values for the resonance frequency and bandwidth in the frequency range from 8 to 12 GHz. For validation purpose, a bandstop FSS filter, centered at 11 GHz and with a 4 GHz bandwidth, was synthesized, fabricated, and measured. Good agreement between simulated and measured results is reported. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:2400–2405, 2015</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mop.29349</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-2477
ispartof Microwave and optical technology letters, 2015-10, Vol.57 (10), p.2400-2405
issn 0895-2477
1098-2760
language eng
recordid cdi_proquest_miscellaneous_1823941049
source Access via Wiley Online Library
subjects Bandwidth
bioinspired computing
Computer simulation
frequency selective surface
general regression neural network
General regression neural networks
Microwaves
multiobjective cuckoo search
Optimization
Search algorithms
Synthesis
X-band
title Bioinspired multiobjective synthesis of X-band FSS via general regression neural network and cuckoo search algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinspired%20multiobjective%20synthesis%20of%20X-band%20FSS%20via%20general%20regression%20neural%20network%20and%20cuckoo%20search%20algorithm&rft.jtitle=Microwave%20and%20optical%20technology%20letters&rft.au=Neto,%20M.%20C.%20Alcantara&rft.date=2015-10&rft.volume=57&rft.issue=10&rft.spage=2400&rft.epage=2405&rft.pages=2400-2405&rft.issn=0895-2477&rft.eissn=1098-2760&rft.coden=MOTLEO&rft_id=info:doi/10.1002/mop.29349&rft_dat=%3Cproquest_cross%3E3762066931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699500302&rft_id=info:pmid/&rfr_iscdi=true