Variational data assimilation and parameter estimation in an equatorial Pacific Ocean model

A variational data assimilation and parameter estimation method for a reduced gravity model is developed. The method is applied to the Equatorial Pacific Ocean. In the variational formalism a cost function measuring the "distance" between the model solution and the observations is minimize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in oceanography 1991, Vol.26 (2), p.179-241
Hauptverfasser: SMEDSTAD, O. M, O'BRIEN, J. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 2
container_start_page 179
container_title Progress in oceanography
container_volume 26
creator SMEDSTAD, O. M
O'BRIEN, J. J
description A variational data assimilation and parameter estimation method for a reduced gravity model is developed. The method is applied to the Equatorial Pacific Ocean. In the variational formalism a cost function measuring the "distance" between the model solution and the observations is minimized. The phase speed in the model is used as a control parameter and the optimal spatial structure giving the best fit of the model to the observations is determined. In the minimization algorithm a conjugate gradient descent direction is used. The method is computationally effective, and for the experiments considered convergence is achieved in ten iterations or less. Several experiments are performed using the model solutions as observations. It is shown that the assimilation algorithm is able to determine the large scale spatial structure of the phase speed, even if observations are available at only three stations. Real sea level observations from three stations are assimilated for two different periods. The year 1979 was chosen to represent a year without an El Nino, while 1982/83 was chosen to represent an El Nino year.
doi_str_mv 10.1016/0079-6611(91)90002-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18238967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15967293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-7a5e15fc40fb78f1782d48057c3037cb7378dbe6e07c08e1c4cdef9faa7c2cb23</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKv_wEU2ii5G85pJspTiCwp1oW5chDuZBCLzaJPpwn9vxhZdCoGQe75zuDkInVNyQwmtbgmRuqgqSq80vdaEEFaIAzSjSvJCCMkO0ewXOUYnKX1ODKnYDH28QwwwhqGHFjcwAoaUQhfanxmGvsFriNC50UXs0hi6nRAmDbvNFsYhB7T4BWzwweKVdVnohsa1p-jIQ5vc2f6eo7eH-9fFU7FcPT4v7paFFUSOhYTS0dLnh6-l8lQq1ghFSmk54dLWkkvV1K5yRFqiHLXCNs5rDyAtszXjc3S5y13HYbPNS5ouJOvaFno3bJOhinGlK_k_WGaKaZ5BsQNtHFKKzpt1zD-PX4YSM1Vupj7N1KfR-Ux1GpFtF_t8SBZaH6G3If15taSkqjj_BjNBgjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15967293</pqid></control><display><type>article</type><title>Variational data assimilation and parameter estimation in an equatorial Pacific Ocean model</title><source>Access via ScienceDirect (Elsevier)</source><creator>SMEDSTAD, O. M ; O'BRIEN, J. J</creator><creatorcontrib>SMEDSTAD, O. M ; O'BRIEN, J. J</creatorcontrib><description>A variational data assimilation and parameter estimation method for a reduced gravity model is developed. The method is applied to the Equatorial Pacific Ocean. In the variational formalism a cost function measuring the "distance" between the model solution and the observations is minimized. The phase speed in the model is used as a control parameter and the optimal spatial structure giving the best fit of the model to the observations is determined. In the minimization algorithm a conjugate gradient descent direction is used. The method is computationally effective, and for the experiments considered convergence is achieved in ten iterations or less. Several experiments are performed using the model solutions as observations. It is shown that the assimilation algorithm is able to determine the large scale spatial structure of the phase speed, even if observations are available at only three stations. Real sea level observations from three stations are assimilated for two different periods. The year 1979 was chosen to represent a year without an El Nino, while 1982/83 was chosen to represent an El Nino year.</description><identifier>ISSN: 0079-6611</identifier><identifier>EISSN: 1873-4472</identifier><identifier>DOI: 10.1016/0079-6611(91)90002-4</identifier><identifier>CODEN: POCNA8</identifier><language>eng</language><publisher>Oxford: Elsevier</publisher><subject>Dynamics of the ocean (upper and deep oceans) ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Marine ; Physics of the oceans</subject><ispartof>Progress in oceanography, 1991, Vol.26 (2), p.179-241</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-7a5e15fc40fb78f1782d48057c3037cb7378dbe6e07c08e1c4cdef9faa7c2cb23</citedby><cites>FETCH-LOGICAL-c407t-7a5e15fc40fb78f1782d48057c3037cb7378dbe6e07c08e1c4cdef9faa7c2cb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19710663$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SMEDSTAD, O. M</creatorcontrib><creatorcontrib>O'BRIEN, J. J</creatorcontrib><title>Variational data assimilation and parameter estimation in an equatorial Pacific Ocean model</title><title>Progress in oceanography</title><description>A variational data assimilation and parameter estimation method for a reduced gravity model is developed. The method is applied to the Equatorial Pacific Ocean. In the variational formalism a cost function measuring the "distance" between the model solution and the observations is minimized. The phase speed in the model is used as a control parameter and the optimal spatial structure giving the best fit of the model to the observations is determined. In the minimization algorithm a conjugate gradient descent direction is used. The method is computationally effective, and for the experiments considered convergence is achieved in ten iterations or less. Several experiments are performed using the model solutions as observations. It is shown that the assimilation algorithm is able to determine the large scale spatial structure of the phase speed, even if observations are available at only three stations. Real sea level observations from three stations are assimilated for two different periods. The year 1979 was chosen to represent a year without an El Nino, while 1982/83 was chosen to represent an El Nino year.</description><subject>Dynamics of the ocean (upper and deep oceans)</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Marine</subject><subject>Physics of the oceans</subject><issn>0079-6611</issn><issn>1873-4472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKv_wEU2ii5G85pJspTiCwp1oW5chDuZBCLzaJPpwn9vxhZdCoGQe75zuDkInVNyQwmtbgmRuqgqSq80vdaEEFaIAzSjSvJCCMkO0ewXOUYnKX1ODKnYDH28QwwwhqGHFjcwAoaUQhfanxmGvsFriNC50UXs0hi6nRAmDbvNFsYhB7T4BWzwweKVdVnohsa1p-jIQ5vc2f6eo7eH-9fFU7FcPT4v7paFFUSOhYTS0dLnh6-l8lQq1ghFSmk54dLWkkvV1K5yRFqiHLXCNs5rDyAtszXjc3S5y13HYbPNS5ouJOvaFno3bJOhinGlK_k_WGaKaZ5BsQNtHFKKzpt1zD-PX4YSM1Vupj7N1KfR-Ux1GpFtF_t8SBZaH6G3If15taSkqjj_BjNBgjo</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>SMEDSTAD, O. M</creator><creator>O'BRIEN, J. J</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>1991</creationdate><title>Variational data assimilation and parameter estimation in an equatorial Pacific Ocean model</title><author>SMEDSTAD, O. M ; O'BRIEN, J. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-7a5e15fc40fb78f1782d48057c3037cb7378dbe6e07c08e1c4cdef9faa7c2cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Dynamics of the ocean (upper and deep oceans)</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Marine</topic><topic>Physics of the oceans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SMEDSTAD, O. M</creatorcontrib><creatorcontrib>O'BRIEN, J. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Progress in oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SMEDSTAD, O. M</au><au>O'BRIEN, J. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational data assimilation and parameter estimation in an equatorial Pacific Ocean model</atitle><jtitle>Progress in oceanography</jtitle><date>1991</date><risdate>1991</risdate><volume>26</volume><issue>2</issue><spage>179</spage><epage>241</epage><pages>179-241</pages><issn>0079-6611</issn><eissn>1873-4472</eissn><coden>POCNA8</coden><abstract>A variational data assimilation and parameter estimation method for a reduced gravity model is developed. The method is applied to the Equatorial Pacific Ocean. In the variational formalism a cost function measuring the "distance" between the model solution and the observations is minimized. The phase speed in the model is used as a control parameter and the optimal spatial structure giving the best fit of the model to the observations is determined. In the minimization algorithm a conjugate gradient descent direction is used. The method is computationally effective, and for the experiments considered convergence is achieved in ten iterations or less. Several experiments are performed using the model solutions as observations. It is shown that the assimilation algorithm is able to determine the large scale spatial structure of the phase speed, even if observations are available at only three stations. Real sea level observations from three stations are assimilated for two different periods. The year 1979 was chosen to represent a year without an El Nino, while 1982/83 was chosen to represent an El Nino year.</abstract><cop>Oxford</cop><pub>Elsevier</pub><doi>10.1016/0079-6611(91)90002-4</doi><tpages>63</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0079-6611
ispartof Progress in oceanography, 1991, Vol.26 (2), p.179-241
issn 0079-6611
1873-4472
language eng
recordid cdi_proquest_miscellaneous_18238967
source Access via ScienceDirect (Elsevier)
subjects Dynamics of the ocean (upper and deep oceans)
Earth, ocean, space
Exact sciences and technology
External geophysics
Marine
Physics of the oceans
title Variational data assimilation and parameter estimation in an equatorial Pacific Ocean model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20data%20assimilation%20and%20parameter%20estimation%20in%20an%20equatorial%20Pacific%20Ocean%20model&rft.jtitle=Progress%20in%20oceanography&rft.au=SMEDSTAD,%20O.%20M&rft.date=1991&rft.volume=26&rft.issue=2&rft.spage=179&rft.epage=241&rft.pages=179-241&rft.issn=0079-6611&rft.eissn=1873-4472&rft.coden=POCNA8&rft_id=info:doi/10.1016/0079-6611(91)90002-4&rft_dat=%3Cproquest_cross%3E15967293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15967293&rft_id=info:pmid/&rfr_iscdi=true