Climatic changes in central and eastern Canada inferred from deep borehole temperature data
We analyzed data from 23 boreholes at 19 sites in central and eastern Canada, for the purpose of estimating ground surface temperature (GST) histories. These boreholes were logged down to at least 550 m depth with thermistor probes. Thermal conductivity measurements had been previously made at small...
Gespeichert in:
Veröffentlicht in: | Global and planetary change 1992, Vol.6 (2), p.129-141 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyzed data from 23 boreholes at 19 sites in central and eastern Canada, for the purpose of estimating ground surface temperature (GST) histories. These boreholes were logged down to at least 550 m depth with thermistor probes. Thermal conductivity measurements had been previously made at small depth intervals for the entire depth ranges of most of the boreholes. The temperature profiles of these boreholes do not indicate water disturbance. We estimated terrain effects for each borehole using a time dependent solid-angle method. The thermal perturbations caused by lakes or deforestation near the borehole sites are insignificant in most cases. However, four of the holes were found to be severely influenced by terrain effects. GSTs estimated from the borehole data less influenced by the terraineffects form two groups. The first group, which are generally from data of better quality, show a cold period near the end of the last century before the recent warming trend; the second show it 80–100 years earlier. We consider the former typical of the climate of the Boreal climatic region of Canada. The difference between the two groups may reflect the spacial variability of the climate. Four GST estimates do not belong to either type, and the reasons are discussed. |
---|---|
ISSN: | 0921-8181 1872-6364 |
DOI: | 10.1016/0921-8181(92)90031-5 |