Carbohydrate Metabolism in Ectomycorrhizas: Gene Expression, Monosaccharide Transport and Metabolic Control
Ectomycorrhizas are mutalistic symbiotic associations formed between fine roots of higher plants, mostly trees, and a wide range of soil ascomycetes and basidiomycetes. It is commonly accepted that there is mutual benefit to the partners, due to the exchange of plant-derived carbohydrates for amino...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2001-06, Vol.150 (3), p.533-541 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 541 |
---|---|
container_issue | 3 |
container_start_page | 533 |
container_title | The New phytologist |
container_volume | 150 |
creator | Nehls, Uwe Mikolajewski, Sabine Magel, Elisabeth Hampp, Rüdiger |
description | Ectomycorrhizas are mutalistic symbiotic associations formed between fine roots of higher plants, mostly trees, and a wide range of soil ascomycetes and basidiomycetes. It is commonly accepted that there is mutual benefit to the partners, due to the exchange of plant-derived carbohydrates for amino acids and nutrients supplied by the fungus. While the major concepts of mycorrhizal functioning (exchange of nutrients and metabolites) were proposed in the 1960s, their verification at the molecular level started approximately 10 years ago. This review covers concepts at the molecular level concerned with the fungal carbohydrate supply in symbiosis. We discuss: strategies used by host plants to compensate (and perhaps restrict) carbohydrate drain to the fungal partner; fungal mechanisms that generate strong monosaccharide sinks in colonized plant roots (the formation of a strong carbohydrate sink is a prerequisite for efficient fungal carbohydrate support by the plant partner); and the impact of apoplastic hexose concentration on the regulation of fungal metabolism in symbiosis, since monosaccharides not only serve as nutrients but also as a signal that regulates gene expression. |
doi_str_mv | 10.1046/j.1469-8137.2001.00141.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18228841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1353658</jstor_id><sourcerecordid>1353658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3901-aeb3bef2a868355c25c18cad2c16512f92ea4e134c26baa881480c549dbb2ad53</originalsourceid><addsrcrecordid>eNqNkE9v2zAMxYVhBZal_QY7CBjQU-1JsqzJRS-FkTUD0j-HFOhNoGUZUeZYqehiST997abIrjsQPPC9R_JHCOUs5UyqH-uUS1Ukmmc_U8EYT4eSPN19IpPj4DOZMCZ0oqR6-kK-Iq4ZY0WuxIT8KSFWYbWvI_SO3roeqtB63FDf0Zntw2ZvQ4wr_wp4SW9c5-hst40O0Yfugt6GLiBYu4Loa0eXETrchthT6OpjmKVl6PoY2lNy0kCL7uyjT8njr9mynCeL-5vf5fUisVnBeAKuyirXCNBKZ3luRW65tlALy1XORVMIB9LxTFqhKgCtudTM5rKoq0pAnWdTcn7I3cbw_OKwNxuP1rUtdC68oOFaCK0lH4T6ILQxIEbXmG30G4h7w5kZ6Zq1GSGaEaIZ6Zp3umY3WL9_7AC00DbD59bj0V9oKbPxkquD6q9v3f6_083dw5y_3_ftYF9jH-I_-5Cscp29ARNgmEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18228841</pqid></control><display><type>article</type><title>Carbohydrate Metabolism in Ectomycorrhizas: Gene Expression, Monosaccharide Transport and Metabolic Control</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Nehls, Uwe ; Mikolajewski, Sabine ; Magel, Elisabeth ; Hampp, Rüdiger</creator><creatorcontrib>Nehls, Uwe ; Mikolajewski, Sabine ; Magel, Elisabeth ; Hampp, Rüdiger</creatorcontrib><description>Ectomycorrhizas are mutalistic symbiotic associations formed between fine roots of higher plants, mostly trees, and a wide range of soil ascomycetes and basidiomycetes. It is commonly accepted that there is mutual benefit to the partners, due to the exchange of plant-derived carbohydrates for amino acids and nutrients supplied by the fungus. While the major concepts of mycorrhizal functioning (exchange of nutrients and metabolites) were proposed in the 1960s, their verification at the molecular level started approximately 10 years ago. This review covers concepts at the molecular level concerned with the fungal carbohydrate supply in symbiosis. We discuss: strategies used by host plants to compensate (and perhaps restrict) carbohydrate drain to the fungal partner; fungal mechanisms that generate strong monosaccharide sinks in colonized plant roots (the formation of a strong carbohydrate sink is a prerequisite for efficient fungal carbohydrate support by the plant partner); and the impact of apoplastic hexose concentration on the regulation of fungal metabolism in symbiosis, since monosaccharides not only serve as nutrients but also as a signal that regulates gene expression.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1046/j.1469-8137.2001.00141.x</identifier><identifier>CODEN: NEPHAV</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science</publisher><subject>Amanita muscaria ; Biological and medical sciences ; Carbohydrates ; carbon allocation ; cyclic AMP ; Ectomycorrhiza ; Ectomycorrhizas ; Fundamental and applied biological sciences. Psychology ; Fungi ; gene expression ; Gene expression regulation ; Hexoses ; Hyphae ; monosaccharide ; monosaccharide transporter ; Monosaccharides ; Mycorrhizas ; Parasitism and symbiosis ; Picea abies ; Plant physiology and development ; Plants ; Populus tremula × tremuloides ; Research Review ; Symbiosis</subject><ispartof>The New phytologist, 2001-06, Vol.150 (3), p.533-541</ispartof><rights>Copyright 2001 New Phytologist</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3901-aeb3bef2a868355c25c18cad2c16512f92ea4e134c26baa881480c549dbb2ad53</citedby><cites>FETCH-LOGICAL-c3901-aeb3bef2a868355c25c18cad2c16512f92ea4e134c26baa881480c549dbb2ad53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1353658$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1353658$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=984435$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nehls, Uwe</creatorcontrib><creatorcontrib>Mikolajewski, Sabine</creatorcontrib><creatorcontrib>Magel, Elisabeth</creatorcontrib><creatorcontrib>Hampp, Rüdiger</creatorcontrib><title>Carbohydrate Metabolism in Ectomycorrhizas: Gene Expression, Monosaccharide Transport and Metabolic Control</title><title>The New phytologist</title><description>Ectomycorrhizas are mutalistic symbiotic associations formed between fine roots of higher plants, mostly trees, and a wide range of soil ascomycetes and basidiomycetes. It is commonly accepted that there is mutual benefit to the partners, due to the exchange of plant-derived carbohydrates for amino acids and nutrients supplied by the fungus. While the major concepts of mycorrhizal functioning (exchange of nutrients and metabolites) were proposed in the 1960s, their verification at the molecular level started approximately 10 years ago. This review covers concepts at the molecular level concerned with the fungal carbohydrate supply in symbiosis. We discuss: strategies used by host plants to compensate (and perhaps restrict) carbohydrate drain to the fungal partner; fungal mechanisms that generate strong monosaccharide sinks in colonized plant roots (the formation of a strong carbohydrate sink is a prerequisite for efficient fungal carbohydrate support by the plant partner); and the impact of apoplastic hexose concentration on the regulation of fungal metabolism in symbiosis, since monosaccharides not only serve as nutrients but also as a signal that regulates gene expression.</description><subject>Amanita muscaria</subject><subject>Biological and medical sciences</subject><subject>Carbohydrates</subject><subject>carbon allocation</subject><subject>cyclic AMP</subject><subject>Ectomycorrhiza</subject><subject>Ectomycorrhizas</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>gene expression</subject><subject>Gene expression regulation</subject><subject>Hexoses</subject><subject>Hyphae</subject><subject>monosaccharide</subject><subject>monosaccharide transporter</subject><subject>Monosaccharides</subject><subject>Mycorrhizas</subject><subject>Parasitism and symbiosis</subject><subject>Picea abies</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Populus tremula × tremuloides</subject><subject>Research Review</subject><subject>Symbiosis</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNkE9v2zAMxYVhBZal_QY7CBjQU-1JsqzJRS-FkTUD0j-HFOhNoGUZUeZYqehiST997abIrjsQPPC9R_JHCOUs5UyqH-uUS1Ukmmc_U8EYT4eSPN19IpPj4DOZMCZ0oqR6-kK-Iq4ZY0WuxIT8KSFWYbWvI_SO3roeqtB63FDf0Zntw2ZvQ4wr_wp4SW9c5-hst40O0Yfugt6GLiBYu4Loa0eXETrchthT6OpjmKVl6PoY2lNy0kCL7uyjT8njr9mynCeL-5vf5fUisVnBeAKuyirXCNBKZ3luRW65tlALy1XORVMIB9LxTFqhKgCtudTM5rKoq0pAnWdTcn7I3cbw_OKwNxuP1rUtdC68oOFaCK0lH4T6ILQxIEbXmG30G4h7w5kZ6Zq1GSGaEaIZ6Zp3umY3WL9_7AC00DbD59bj0V9oKbPxkquD6q9v3f6_083dw5y_3_ftYF9jH-I_-5Cscp29ARNgmEw</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Nehls, Uwe</creator><creator>Mikolajewski, Sabine</creator><creator>Magel, Elisabeth</creator><creator>Hampp, Rüdiger</creator><general>Blackwell Science</general><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200106</creationdate><title>Carbohydrate Metabolism in Ectomycorrhizas: Gene Expression, Monosaccharide Transport and Metabolic Control</title><author>Nehls, Uwe ; Mikolajewski, Sabine ; Magel, Elisabeth ; Hampp, Rüdiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3901-aeb3bef2a868355c25c18cad2c16512f92ea4e134c26baa881480c549dbb2ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amanita muscaria</topic><topic>Biological and medical sciences</topic><topic>Carbohydrates</topic><topic>carbon allocation</topic><topic>cyclic AMP</topic><topic>Ectomycorrhiza</topic><topic>Ectomycorrhizas</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>gene expression</topic><topic>Gene expression regulation</topic><topic>Hexoses</topic><topic>Hyphae</topic><topic>monosaccharide</topic><topic>monosaccharide transporter</topic><topic>Monosaccharides</topic><topic>Mycorrhizas</topic><topic>Parasitism and symbiosis</topic><topic>Picea abies</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Populus tremula × tremuloides</topic><topic>Research Review</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nehls, Uwe</creatorcontrib><creatorcontrib>Mikolajewski, Sabine</creatorcontrib><creatorcontrib>Magel, Elisabeth</creatorcontrib><creatorcontrib>Hampp, Rüdiger</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nehls, Uwe</au><au>Mikolajewski, Sabine</au><au>Magel, Elisabeth</au><au>Hampp, Rüdiger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbohydrate Metabolism in Ectomycorrhizas: Gene Expression, Monosaccharide Transport and Metabolic Control</atitle><jtitle>The New phytologist</jtitle><date>2001-06</date><risdate>2001</risdate><volume>150</volume><issue>3</issue><spage>533</spage><epage>541</epage><pages>533-541</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><coden>NEPHAV</coden><abstract>Ectomycorrhizas are mutalistic symbiotic associations formed between fine roots of higher plants, mostly trees, and a wide range of soil ascomycetes and basidiomycetes. It is commonly accepted that there is mutual benefit to the partners, due to the exchange of plant-derived carbohydrates for amino acids and nutrients supplied by the fungus. While the major concepts of mycorrhizal functioning (exchange of nutrients and metabolites) were proposed in the 1960s, their verification at the molecular level started approximately 10 years ago. This review covers concepts at the molecular level concerned with the fungal carbohydrate supply in symbiosis. We discuss: strategies used by host plants to compensate (and perhaps restrict) carbohydrate drain to the fungal partner; fungal mechanisms that generate strong monosaccharide sinks in colonized plant roots (the formation of a strong carbohydrate sink is a prerequisite for efficient fungal carbohydrate support by the plant partner); and the impact of apoplastic hexose concentration on the regulation of fungal metabolism in symbiosis, since monosaccharides not only serve as nutrients but also as a signal that regulates gene expression.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science</pub><doi>10.1046/j.1469-8137.2001.00141.x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2001-06, Vol.150 (3), p.533-541 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_18228841 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; IngentaConnect Free/Open Access Journals; Wiley Online Library (Open Access Collection) |
subjects | Amanita muscaria Biological and medical sciences Carbohydrates carbon allocation cyclic AMP Ectomycorrhiza Ectomycorrhizas Fundamental and applied biological sciences. Psychology Fungi gene expression Gene expression regulation Hexoses Hyphae monosaccharide monosaccharide transporter Monosaccharides Mycorrhizas Parasitism and symbiosis Picea abies Plant physiology and development Plants Populus tremula × tremuloides Research Review Symbiosis |
title | Carbohydrate Metabolism in Ectomycorrhizas: Gene Expression, Monosaccharide Transport and Metabolic Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbohydrate%20Metabolism%20in%20Ectomycorrhizas:%20Gene%20Expression,%20Monosaccharide%20Transport%20and%20Metabolic%20Control&rft.jtitle=The%20New%20phytologist&rft.au=Nehls,%20Uwe&rft.date=2001-06&rft.volume=150&rft.issue=3&rft.spage=533&rft.epage=541&rft.pages=533-541&rft.issn=0028-646X&rft.eissn=1469-8137&rft.coden=NEPHAV&rft_id=info:doi/10.1046/j.1469-8137.2001.00141.x&rft_dat=%3Cjstor_proqu%3E1353658%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18228841&rft_id=info:pmid/&rft_jstor_id=1353658&rfr_iscdi=true |