Carbohydrate Metabolism in Ectomycorrhizas: Gene Expression, Monosaccharide Transport and Metabolic Control

Ectomycorrhizas are mutalistic symbiotic associations formed between fine roots of higher plants, mostly trees, and a wide range of soil ascomycetes and basidiomycetes. It is commonly accepted that there is mutual benefit to the partners, due to the exchange of plant-derived carbohydrates for amino...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2001-06, Vol.150 (3), p.533-541
Hauptverfasser: Nehls, Uwe, Mikolajewski, Sabine, Magel, Elisabeth, Hampp, Rüdiger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 541
container_issue 3
container_start_page 533
container_title The New phytologist
container_volume 150
creator Nehls, Uwe
Mikolajewski, Sabine
Magel, Elisabeth
Hampp, Rüdiger
description Ectomycorrhizas are mutalistic symbiotic associations formed between fine roots of higher plants, mostly trees, and a wide range of soil ascomycetes and basidiomycetes. It is commonly accepted that there is mutual benefit to the partners, due to the exchange of plant-derived carbohydrates for amino acids and nutrients supplied by the fungus. While the major concepts of mycorrhizal functioning (exchange of nutrients and metabolites) were proposed in the 1960s, their verification at the molecular level started approximately 10 years ago. This review covers concepts at the molecular level concerned with the fungal carbohydrate supply in symbiosis. We discuss: strategies used by host plants to compensate (and perhaps restrict) carbohydrate drain to the fungal partner; fungal mechanisms that generate strong monosaccharide sinks in colonized plant roots (the formation of a strong carbohydrate sink is a prerequisite for efficient fungal carbohydrate support by the plant partner); and the impact of apoplastic hexose concentration on the regulation of fungal metabolism in symbiosis, since monosaccharides not only serve as nutrients but also as a signal that regulates gene expression.
doi_str_mv 10.1046/j.1469-8137.2001.00141.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18228841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1353658</jstor_id><sourcerecordid>1353658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3901-aeb3bef2a868355c25c18cad2c16512f92ea4e134c26baa881480c549dbb2ad53</originalsourceid><addsrcrecordid>eNqNkE9v2zAMxYVhBZal_QY7CBjQU-1JsqzJRS-FkTUD0j-HFOhNoGUZUeZYqehiST997abIrjsQPPC9R_JHCOUs5UyqH-uUS1Ukmmc_U8EYT4eSPN19IpPj4DOZMCZ0oqR6-kK-Iq4ZY0WuxIT8KSFWYbWvI_SO3roeqtB63FDf0Zntw2ZvQ4wr_wp4SW9c5-hst40O0Yfugt6GLiBYu4Loa0eXETrchthT6OpjmKVl6PoY2lNy0kCL7uyjT8njr9mynCeL-5vf5fUisVnBeAKuyirXCNBKZ3luRW65tlALy1XORVMIB9LxTFqhKgCtudTM5rKoq0pAnWdTcn7I3cbw_OKwNxuP1rUtdC68oOFaCK0lH4T6ILQxIEbXmG30G4h7w5kZ6Zq1GSGaEaIZ6Zp3umY3WL9_7AC00DbD59bj0V9oKbPxkquD6q9v3f6_083dw5y_3_ftYF9jH-I_-5Cscp29ARNgmEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18228841</pqid></control><display><type>article</type><title>Carbohydrate Metabolism in Ectomycorrhizas: Gene Expression, Monosaccharide Transport and Metabolic Control</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Nehls, Uwe ; Mikolajewski, Sabine ; Magel, Elisabeth ; Hampp, Rüdiger</creator><creatorcontrib>Nehls, Uwe ; Mikolajewski, Sabine ; Magel, Elisabeth ; Hampp, Rüdiger</creatorcontrib><description>Ectomycorrhizas are mutalistic symbiotic associations formed between fine roots of higher plants, mostly trees, and a wide range of soil ascomycetes and basidiomycetes. It is commonly accepted that there is mutual benefit to the partners, due to the exchange of plant-derived carbohydrates for amino acids and nutrients supplied by the fungus. While the major concepts of mycorrhizal functioning (exchange of nutrients and metabolites) were proposed in the 1960s, their verification at the molecular level started approximately 10 years ago. This review covers concepts at the molecular level concerned with the fungal carbohydrate supply in symbiosis. We discuss: strategies used by host plants to compensate (and perhaps restrict) carbohydrate drain to the fungal partner; fungal mechanisms that generate strong monosaccharide sinks in colonized plant roots (the formation of a strong carbohydrate sink is a prerequisite for efficient fungal carbohydrate support by the plant partner); and the impact of apoplastic hexose concentration on the regulation of fungal metabolism in symbiosis, since monosaccharides not only serve as nutrients but also as a signal that regulates gene expression.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1046/j.1469-8137.2001.00141.x</identifier><identifier>CODEN: NEPHAV</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science</publisher><subject>Amanita muscaria ; Biological and medical sciences ; Carbohydrates ; carbon allocation ; cyclic AMP ; Ectomycorrhiza ; Ectomycorrhizas ; Fundamental and applied biological sciences. Psychology ; Fungi ; gene expression ; Gene expression regulation ; Hexoses ; Hyphae ; monosaccharide ; monosaccharide transporter ; Monosaccharides ; Mycorrhizas ; Parasitism and symbiosis ; Picea abies ; Plant physiology and development ; Plants ; Populus tremula × tremuloides ; Research Review ; Symbiosis</subject><ispartof>The New phytologist, 2001-06, Vol.150 (3), p.533-541</ispartof><rights>Copyright 2001 New Phytologist</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3901-aeb3bef2a868355c25c18cad2c16512f92ea4e134c26baa881480c549dbb2ad53</citedby><cites>FETCH-LOGICAL-c3901-aeb3bef2a868355c25c18cad2c16512f92ea4e134c26baa881480c549dbb2ad53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1353658$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1353658$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=984435$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nehls, Uwe</creatorcontrib><creatorcontrib>Mikolajewski, Sabine</creatorcontrib><creatorcontrib>Magel, Elisabeth</creatorcontrib><creatorcontrib>Hampp, Rüdiger</creatorcontrib><title>Carbohydrate Metabolism in Ectomycorrhizas: Gene Expression, Monosaccharide Transport and Metabolic Control</title><title>The New phytologist</title><description>Ectomycorrhizas are mutalistic symbiotic associations formed between fine roots of higher plants, mostly trees, and a wide range of soil ascomycetes and basidiomycetes. It is commonly accepted that there is mutual benefit to the partners, due to the exchange of plant-derived carbohydrates for amino acids and nutrients supplied by the fungus. While the major concepts of mycorrhizal functioning (exchange of nutrients and metabolites) were proposed in the 1960s, their verification at the molecular level started approximately 10 years ago. This review covers concepts at the molecular level concerned with the fungal carbohydrate supply in symbiosis. We discuss: strategies used by host plants to compensate (and perhaps restrict) carbohydrate drain to the fungal partner; fungal mechanisms that generate strong monosaccharide sinks in colonized plant roots (the formation of a strong carbohydrate sink is a prerequisite for efficient fungal carbohydrate support by the plant partner); and the impact of apoplastic hexose concentration on the regulation of fungal metabolism in symbiosis, since monosaccharides not only serve as nutrients but also as a signal that regulates gene expression.</description><subject>Amanita muscaria</subject><subject>Biological and medical sciences</subject><subject>Carbohydrates</subject><subject>carbon allocation</subject><subject>cyclic AMP</subject><subject>Ectomycorrhiza</subject><subject>Ectomycorrhizas</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>gene expression</subject><subject>Gene expression regulation</subject><subject>Hexoses</subject><subject>Hyphae</subject><subject>monosaccharide</subject><subject>monosaccharide transporter</subject><subject>Monosaccharides</subject><subject>Mycorrhizas</subject><subject>Parasitism and symbiosis</subject><subject>Picea abies</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Populus tremula × tremuloides</subject><subject>Research Review</subject><subject>Symbiosis</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNkE9v2zAMxYVhBZal_QY7CBjQU-1JsqzJRS-FkTUD0j-HFOhNoGUZUeZYqehiST997abIrjsQPPC9R_JHCOUs5UyqH-uUS1Ukmmc_U8EYT4eSPN19IpPj4DOZMCZ0oqR6-kK-Iq4ZY0WuxIT8KSFWYbWvI_SO3roeqtB63FDf0Zntw2ZvQ4wr_wp4SW9c5-hst40O0Yfugt6GLiBYu4Loa0eXETrchthT6OpjmKVl6PoY2lNy0kCL7uyjT8njr9mynCeL-5vf5fUisVnBeAKuyirXCNBKZ3luRW65tlALy1XORVMIB9LxTFqhKgCtudTM5rKoq0pAnWdTcn7I3cbw_OKwNxuP1rUtdC68oOFaCK0lH4T6ILQxIEbXmG30G4h7w5kZ6Zq1GSGaEaIZ6Zp3umY3WL9_7AC00DbD59bj0V9oKbPxkquD6q9v3f6_083dw5y_3_ftYF9jH-I_-5Cscp29ARNgmEw</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Nehls, Uwe</creator><creator>Mikolajewski, Sabine</creator><creator>Magel, Elisabeth</creator><creator>Hampp, Rüdiger</creator><general>Blackwell Science</general><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200106</creationdate><title>Carbohydrate Metabolism in Ectomycorrhizas: Gene Expression, Monosaccharide Transport and Metabolic Control</title><author>Nehls, Uwe ; Mikolajewski, Sabine ; Magel, Elisabeth ; Hampp, Rüdiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3901-aeb3bef2a868355c25c18cad2c16512f92ea4e134c26baa881480c549dbb2ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amanita muscaria</topic><topic>Biological and medical sciences</topic><topic>Carbohydrates</topic><topic>carbon allocation</topic><topic>cyclic AMP</topic><topic>Ectomycorrhiza</topic><topic>Ectomycorrhizas</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>gene expression</topic><topic>Gene expression regulation</topic><topic>Hexoses</topic><topic>Hyphae</topic><topic>monosaccharide</topic><topic>monosaccharide transporter</topic><topic>Monosaccharides</topic><topic>Mycorrhizas</topic><topic>Parasitism and symbiosis</topic><topic>Picea abies</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Populus tremula × tremuloides</topic><topic>Research Review</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nehls, Uwe</creatorcontrib><creatorcontrib>Mikolajewski, Sabine</creatorcontrib><creatorcontrib>Magel, Elisabeth</creatorcontrib><creatorcontrib>Hampp, Rüdiger</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nehls, Uwe</au><au>Mikolajewski, Sabine</au><au>Magel, Elisabeth</au><au>Hampp, Rüdiger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbohydrate Metabolism in Ectomycorrhizas: Gene Expression, Monosaccharide Transport and Metabolic Control</atitle><jtitle>The New phytologist</jtitle><date>2001-06</date><risdate>2001</risdate><volume>150</volume><issue>3</issue><spage>533</spage><epage>541</epage><pages>533-541</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><coden>NEPHAV</coden><abstract>Ectomycorrhizas are mutalistic symbiotic associations formed between fine roots of higher plants, mostly trees, and a wide range of soil ascomycetes and basidiomycetes. It is commonly accepted that there is mutual benefit to the partners, due to the exchange of plant-derived carbohydrates for amino acids and nutrients supplied by the fungus. While the major concepts of mycorrhizal functioning (exchange of nutrients and metabolites) were proposed in the 1960s, their verification at the molecular level started approximately 10 years ago. This review covers concepts at the molecular level concerned with the fungal carbohydrate supply in symbiosis. We discuss: strategies used by host plants to compensate (and perhaps restrict) carbohydrate drain to the fungal partner; fungal mechanisms that generate strong monosaccharide sinks in colonized plant roots (the formation of a strong carbohydrate sink is a prerequisite for efficient fungal carbohydrate support by the plant partner); and the impact of apoplastic hexose concentration on the regulation of fungal metabolism in symbiosis, since monosaccharides not only serve as nutrients but also as a signal that regulates gene expression.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science</pub><doi>10.1046/j.1469-8137.2001.00141.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2001-06, Vol.150 (3), p.533-541
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_18228841
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; IngentaConnect Free/Open Access Journals; Wiley Online Library (Open Access Collection)
subjects Amanita muscaria
Biological and medical sciences
Carbohydrates
carbon allocation
cyclic AMP
Ectomycorrhiza
Ectomycorrhizas
Fundamental and applied biological sciences. Psychology
Fungi
gene expression
Gene expression regulation
Hexoses
Hyphae
monosaccharide
monosaccharide transporter
Monosaccharides
Mycorrhizas
Parasitism and symbiosis
Picea abies
Plant physiology and development
Plants
Populus tremula × tremuloides
Research Review
Symbiosis
title Carbohydrate Metabolism in Ectomycorrhizas: Gene Expression, Monosaccharide Transport and Metabolic Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbohydrate%20Metabolism%20in%20Ectomycorrhizas:%20Gene%20Expression,%20Monosaccharide%20Transport%20and%20Metabolic%20Control&rft.jtitle=The%20New%20phytologist&rft.au=Nehls,%20Uwe&rft.date=2001-06&rft.volume=150&rft.issue=3&rft.spage=533&rft.epage=541&rft.pages=533-541&rft.issn=0028-646X&rft.eissn=1469-8137&rft.coden=NEPHAV&rft_id=info:doi/10.1046/j.1469-8137.2001.00141.x&rft_dat=%3Cjstor_proqu%3E1353658%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18228841&rft_id=info:pmid/&rft_jstor_id=1353658&rfr_iscdi=true