Secondary Turbidity Maximum in a Partially Mixed Microtidal Estuary

Data from a two-year period of monthly slackwater surveys reveal that in addition to the classical estuary turbidity maximum (ETM), another peak of bottom total suspended sediment (TSS) concentration, or a so-called secondary turbidity maximum (STM), often exists in the middle part of the York River...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuaries 2001-10, Vol.24 (5), p.707-720
Hauptverfasser: Lin, Jing, Kuo, Albert Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 720
container_issue 5
container_start_page 707
container_title Estuaries
container_volume 24
creator Lin, Jing
Kuo, Albert Y.
description Data from a two-year period of monthly slackwater surveys reveal that in addition to the classical estuary turbidity maximum (ETM), another peak of bottom total suspended sediment (TSS) concentration, or a so-called secondary turbidity maximum (STM), often exists in the middle part of the York River estuary, Virginia. This STM, observed in most (but not all) of the slackwater surveys, moves back and forth in the region of about 20 to 40 km from the York River mouth where the mud percentage of bottom sediment is very high. The distribution of the potential energy anomaly, which was calculated using salinity data, indicates that the STM usually resides in the transition zone between the upstream well mixed and the downstream more stratified water columns. An analysis using the conservation equation of suspended sediment concentration in the water column reveals that four processes may contribute to the formation of the STM: convergence of bottom residual flow, tidal asymmetry, inhibition of turbulent diffusion by stratification, and bottom resuspension. The along-channel variations of the strength of bottom residual flow, the effect of tidal asymmetry, and the stratification patterns are probably due to the geometric features of the York River estuary.
doi_str_mv 10.2307/1352879
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18214509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1352879</jstor_id><sourcerecordid>1352879</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-3a97c1b2a15caa1d51d0519c514f2794de741c4ec653fcff5d0f071d9227574b3</originalsourceid><addsrcrecordid>eNpdkFtLAzEQhYMoWKv4B3xYBPVpNZNsNptHKfUCFQXr8zLNBVL2UpNdaP-9kRYEX2Zg5pvDnEPIJdB7xql8AC5YJdURmYAQKmeSwzGZUChpXvFCnpKzGNeUgpKlnJDZp9V9ZzDssuUYVt74YZe94da3Y5v5LsPsA8PgsWnS2G-tSVWHfvAGm2wehzFdnpMTh020F4c-JV9P8-XsJV-8P7_OHhc5ciGGnKOSGlYMQWhEMAIMFaC0gMIxqQpjZQG6sLoU3GnnhKGOSjCKMSlkseJTcrvX3YT-e7RxqFsftW0a7Gw_xhoqBoWgKoHX_8B1P4Yu_VYrKFkBohIJuttDyU6Mwbp6E3yb7NRA698k60OSibw5yGHU2LiAnfbxD096jDGeuKs9t45DH_72B5kf8UR56A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916241585</pqid></control><display><type>article</type><title>Secondary Turbidity Maximum in a Partially Mixed Microtidal Estuary</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Lin, Jing ; Kuo, Albert Y.</creator><creatorcontrib>Lin, Jing ; Kuo, Albert Y.</creatorcontrib><description>Data from a two-year period of monthly slackwater surveys reveal that in addition to the classical estuary turbidity maximum (ETM), another peak of bottom total suspended sediment (TSS) concentration, or a so-called secondary turbidity maximum (STM), often exists in the middle part of the York River estuary, Virginia. This STM, observed in most (but not all) of the slackwater surveys, moves back and forth in the region of about 20 to 40 km from the York River mouth where the mud percentage of bottom sediment is very high. The distribution of the potential energy anomaly, which was calculated using salinity data, indicates that the STM usually resides in the transition zone between the upstream well mixed and the downstream more stratified water columns. An analysis using the conservation equation of suspended sediment concentration in the water column reveals that four processes may contribute to the formation of the STM: convergence of bottom residual flow, tidal asymmetry, inhibition of turbulent diffusion by stratification, and bottom resuspension. The along-channel variations of the strength of bottom residual flow, the effect of tidal asymmetry, and the stratification patterns are probably due to the geometric features of the York River estuary.</description><identifier>ISSN: 0160-8347</identifier><identifier>ISSN: 1559-2723</identifier><identifier>EISSN: 1559-2731</identifier><identifier>DOI: 10.2307/1352879</identifier><identifier>CODEN: ESTUDO</identifier><language>eng</language><publisher>Lawrence, KS: Estuarine Research Federation</publisher><subject>Bottom sediments ; Brackish ; Earth sciences ; Earth, ocean, space ; Eddy diffusion ; Estuaries ; Exact sciences and technology ; Geophysics ; Marine ; Marine and continental quaternary ; Mud ; Oceanography ; Potential energy ; River deltas ; River mouth ; River water ; Rivers ; Salinity ; Saltwater intrusion ; Sediment concentration ; Sediments ; Surficial geology ; Suspended sediments ; Suspended solids ; Tidal effects ; Transition zone ; Turbidity ; USA, Virginia, York R ; Water column</subject><ispartof>Estuaries, 2001-10, Vol.24 (5), p.707-720</ispartof><rights>Copyright 2001 Estuarine Research Federation</rights><rights>2002 INIST-CNRS</rights><rights>Estuarine Research Federation 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-3a97c1b2a15caa1d51d0519c514f2794de741c4ec653fcff5d0f071d9227574b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1352879$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1352879$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,27911,27912,58004,58237</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14152223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Jing</creatorcontrib><creatorcontrib>Kuo, Albert Y.</creatorcontrib><title>Secondary Turbidity Maximum in a Partially Mixed Microtidal Estuary</title><title>Estuaries</title><description>Data from a two-year period of monthly slackwater surveys reveal that in addition to the classical estuary turbidity maximum (ETM), another peak of bottom total suspended sediment (TSS) concentration, or a so-called secondary turbidity maximum (STM), often exists in the middle part of the York River estuary, Virginia. This STM, observed in most (but not all) of the slackwater surveys, moves back and forth in the region of about 20 to 40 km from the York River mouth where the mud percentage of bottom sediment is very high. The distribution of the potential energy anomaly, which was calculated using salinity data, indicates that the STM usually resides in the transition zone between the upstream well mixed and the downstream more stratified water columns. An analysis using the conservation equation of suspended sediment concentration in the water column reveals that four processes may contribute to the formation of the STM: convergence of bottom residual flow, tidal asymmetry, inhibition of turbulent diffusion by stratification, and bottom resuspension. The along-channel variations of the strength of bottom residual flow, the effect of tidal asymmetry, and the stratification patterns are probably due to the geometric features of the York River estuary.</description><subject>Bottom sediments</subject><subject>Brackish</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Eddy diffusion</subject><subject>Estuaries</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Marine</subject><subject>Marine and continental quaternary</subject><subject>Mud</subject><subject>Oceanography</subject><subject>Potential energy</subject><subject>River deltas</subject><subject>River mouth</subject><subject>River water</subject><subject>Rivers</subject><subject>Salinity</subject><subject>Saltwater intrusion</subject><subject>Sediment concentration</subject><subject>Sediments</subject><subject>Surficial geology</subject><subject>Suspended sediments</subject><subject>Suspended solids</subject><subject>Tidal effects</subject><subject>Transition zone</subject><subject>Turbidity</subject><subject>USA, Virginia, York R</subject><subject>Water column</subject><issn>0160-8347</issn><issn>1559-2723</issn><issn>1559-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkFtLAzEQhYMoWKv4B3xYBPVpNZNsNptHKfUCFQXr8zLNBVL2UpNdaP-9kRYEX2Zg5pvDnEPIJdB7xql8AC5YJdURmYAQKmeSwzGZUChpXvFCnpKzGNeUgpKlnJDZp9V9ZzDssuUYVt74YZe94da3Y5v5LsPsA8PgsWnS2G-tSVWHfvAGm2wehzFdnpMTh020F4c-JV9P8-XsJV-8P7_OHhc5ciGGnKOSGlYMQWhEMAIMFaC0gMIxqQpjZQG6sLoU3GnnhKGOSjCKMSlkseJTcrvX3YT-e7RxqFsftW0a7Gw_xhoqBoWgKoHX_8B1P4Yu_VYrKFkBohIJuttDyU6Mwbp6E3yb7NRA698k60OSibw5yGHU2LiAnfbxD096jDGeuKs9t45DH_72B5kf8UR56A</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>Lin, Jing</creator><creator>Kuo, Albert Y.</creator><general>Estuarine Research Federation</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7XB</scope><scope>8AO</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope></search><sort><creationdate>20011001</creationdate><title>Secondary Turbidity Maximum in a Partially Mixed Microtidal Estuary</title><author>Lin, Jing ; Kuo, Albert Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-3a97c1b2a15caa1d51d0519c514f2794de741c4ec653fcff5d0f071d9227574b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Bottom sediments</topic><topic>Brackish</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Eddy diffusion</topic><topic>Estuaries</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Marine</topic><topic>Marine and continental quaternary</topic><topic>Mud</topic><topic>Oceanography</topic><topic>Potential energy</topic><topic>River deltas</topic><topic>River mouth</topic><topic>River water</topic><topic>Rivers</topic><topic>Salinity</topic><topic>Saltwater intrusion</topic><topic>Sediment concentration</topic><topic>Sediments</topic><topic>Surficial geology</topic><topic>Suspended sediments</topic><topic>Suspended solids</topic><topic>Tidal effects</topic><topic>Transition zone</topic><topic>Turbidity</topic><topic>USA, Virginia, York R</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jing</creatorcontrib><creatorcontrib>Kuo, Albert Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><jtitle>Estuaries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jing</au><au>Kuo, Albert Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary Turbidity Maximum in a Partially Mixed Microtidal Estuary</atitle><jtitle>Estuaries</jtitle><date>2001-10-01</date><risdate>2001</risdate><volume>24</volume><issue>5</issue><spage>707</spage><epage>720</epage><pages>707-720</pages><issn>0160-8347</issn><issn>1559-2723</issn><eissn>1559-2731</eissn><coden>ESTUDO</coden><abstract>Data from a two-year period of monthly slackwater surveys reveal that in addition to the classical estuary turbidity maximum (ETM), another peak of bottom total suspended sediment (TSS) concentration, or a so-called secondary turbidity maximum (STM), often exists in the middle part of the York River estuary, Virginia. This STM, observed in most (but not all) of the slackwater surveys, moves back and forth in the region of about 20 to 40 km from the York River mouth where the mud percentage of bottom sediment is very high. The distribution of the potential energy anomaly, which was calculated using salinity data, indicates that the STM usually resides in the transition zone between the upstream well mixed and the downstream more stratified water columns. An analysis using the conservation equation of suspended sediment concentration in the water column reveals that four processes may contribute to the formation of the STM: convergence of bottom residual flow, tidal asymmetry, inhibition of turbulent diffusion by stratification, and bottom resuspension. The along-channel variations of the strength of bottom residual flow, the effect of tidal asymmetry, and the stratification patterns are probably due to the geometric features of the York River estuary.</abstract><cop>Lawrence, KS</cop><pub>Estuarine Research Federation</pub><doi>10.2307/1352879</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0160-8347
ispartof Estuaries, 2001-10, Vol.24 (5), p.707-720
issn 0160-8347
1559-2723
1559-2731
language eng
recordid cdi_proquest_miscellaneous_18214509
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects Bottom sediments
Brackish
Earth sciences
Earth, ocean, space
Eddy diffusion
Estuaries
Exact sciences and technology
Geophysics
Marine
Marine and continental quaternary
Mud
Oceanography
Potential energy
River deltas
River mouth
River water
Rivers
Salinity
Saltwater intrusion
Sediment concentration
Sediments
Surficial geology
Suspended sediments
Suspended solids
Tidal effects
Transition zone
Turbidity
USA, Virginia, York R
Water column
title Secondary Turbidity Maximum in a Partially Mixed Microtidal Estuary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20Turbidity%20Maximum%20in%20a%20Partially%20Mixed%20Microtidal%20Estuary&rft.jtitle=Estuaries&rft.au=Lin,%20Jing&rft.date=2001-10-01&rft.volume=24&rft.issue=5&rft.spage=707&rft.epage=720&rft.pages=707-720&rft.issn=0160-8347&rft.eissn=1559-2731&rft.coden=ESTUDO&rft_id=info:doi/10.2307/1352879&rft_dat=%3Cjstor_proqu%3E1352879%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916241585&rft_id=info:pmid/&rft_jstor_id=1352879&rfr_iscdi=true