Flotation technique with coagulant and polymer application applied to the post-treatment of effluents from anaerobic reactor treating sewage
This paper presents the results of a study performed with a lab-scale batch DAF unit fed with previously coagulated (with FeCl3 and/or cationic polymer) effluent from a pilot-scale expanded bed anaerobic reactor treating domestic sewage. The association between ferric chloride and polymers was studi...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2001-01, Vol.44 (4), p.205-212 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 4 |
container_start_page | 205 |
container_title | Water science and technology |
container_volume | 44 |
creator | Reali, A P Penetra, R G de Carvalho, M E |
description | This paper presents the results of a study performed with a lab-scale batch DAF unit fed with previously coagulated (with FeCl3 and/or cationic polymer) effluent from a pilot-scale expanded bed anaerobic reactor treating domestic sewage. The association between ferric chloride and polymers was studied, aimed at sludge reduction. Ferric chloride dosages ranging from 15 to 65 mg.l-1, and polymer dosages from 0.25 to 7.0 mg.l-1 were investigated. Flocculation conditions were kept constant: 20 min of time (Tf) and 80 s-1 of mean velocity gradient (Gf). Air requirement was kept to 19.0 g of air.m-3 wastewater, using 20% recycle ratio and saturation pressure at 450 kPa. When the anaerobic reactor was operating at steady state conditions, it was possible to reduce the FeCl3 dosage from 65 to 30 mg.l-1 after applying 0.4 mg.l-1 of non-ionic polymer, before the DAF process. For these dosages, 79% COD removal (residual of 23 mg.l-1), 86% total phosphate removal (residual of 0.9 mg.l-1) and 98% turbidity removal (residual of 2.6 NTU) were observed. Furthermore, the use of adequate polymer together with 30 mgFeCl3.l-1 leads to the production of high rising rate flocs. |
doi_str_mv | 10.2166/wst.2001.0223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18208368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18208368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-8705d866694d7b895ad21767bdaab8bb77a8398a9956d1fde68e51ef5ea089c83</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkWa0Gy2OfZaBIXevJUsWx_HErpNIJBLexayNN51sC1Xkln2P-RHR95dKPQ0c3jmZWYehD5Tsikp598PMW1KQuiGlCW7QiuqFC-UYOUHdK-EpLJiTFWEsmu0IqVgBc3cLbqL8ZUQIlhFPqJbSmtRE8lX6G3b-2RS50ecwO7H7u8M-NClPbbe7ObejAmb0eHJ98cBAjbT1Hf2PHDqweHkcdpDRmIqUgCTBshTvsXQtv2c-4jb4IecYyD4prM4Qzb5gE90N-5whIPZwSd005o-wv2lrtGf7c_fD4_F88uvp4cfz4VllUyFFKR2knOuKicaqWrjSiq4aJwxjWwaIYxkShqlau5o64BLqCm0NRgilZVsjb6dc6fg870x6aGLFvp8Lfg5aipLIhlfwK__ga9-DmPeTVOVHy3zv1WmijNlg48xQKun0A0mHDUlepGmszS9SNOLtMx_uaTOzQDuH32xwt4BelWTVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943388189</pqid></control><display><type>article</type><title>Flotation technique with coagulant and polymer application applied to the post-treatment of effluents from anaerobic reactor treating sewage</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Reali, A P ; Penetra, R G ; de Carvalho, M E</creator><contributor>Foresti, E ; Kato, MK (eds) ; Chernicharo, CAL ; Florencio L</contributor><creatorcontrib>Reali, A P ; Penetra, R G ; de Carvalho, M E ; Foresti, E ; Kato, MK (eds) ; Chernicharo, CAL ; Florencio L</creatorcontrib><description>This paper presents the results of a study performed with a lab-scale batch DAF unit fed with previously coagulated (with FeCl3 and/or cationic polymer) effluent from a pilot-scale expanded bed anaerobic reactor treating domestic sewage. The association between ferric chloride and polymers was studied, aimed at sludge reduction. Ferric chloride dosages ranging from 15 to 65 mg.l-1, and polymer dosages from 0.25 to 7.0 mg.l-1 were investigated. Flocculation conditions were kept constant: 20 min of time (Tf) and 80 s-1 of mean velocity gradient (Gf). Air requirement was kept to 19.0 g of air.m-3 wastewater, using 20% recycle ratio and saturation pressure at 450 kPa. When the anaerobic reactor was operating at steady state conditions, it was possible to reduce the FeCl3 dosage from 65 to 30 mg.l-1 after applying 0.4 mg.l-1 of non-ionic polymer, before the DAF process. For these dosages, 79% COD removal (residual of 23 mg.l-1), 86% total phosphate removal (residual of 0.9 mg.l-1) and 98% turbidity removal (residual of 2.6 NTU) were observed. Furthermore, the use of adequate polymer together with 30 mgFeCl3.l-1 leads to the production of high rising rate flocs.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 9781843394013</identifier><identifier>ISBN: 1843394014</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2001.0223</identifier><identifier>PMID: 11575086</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Anaerobic conditions ; Anaerobic treatment ; Bacteria, Anaerobic - physiology ; Bioreactors ; Cationic polymerization ; Cations ; Chlorides ; Coagulants ; Dosage ; Effluent treatment ; Effluents ; Ferric chloride ; Ferric Compounds - chemistry ; Flocculation ; Flotation ; Household wastes ; Phosphates ; Phosphorus - chemistry ; Phosphorus removal ; Polymers ; Polymers - chemistry ; Pressure ; Reactors ; Removal ; Saturation ; Sewage ; Sewage treatment ; Sludge ; Turbidity ; Velocity gradient ; Velocity gradients ; Waste Disposal, Fluid - methods ; Wastewater ; Wastewater treatment</subject><ispartof>Water science and technology, 2001-01, Vol.44 (4), p.205-212</ispartof><rights>Copyright IWA Publishing Aug 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-8705d866694d7b895ad21767bdaab8bb77a8398a9956d1fde68e51ef5ea089c83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11575086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Foresti, E</contributor><contributor>Kato, MK (eds)</contributor><contributor>Chernicharo, CAL</contributor><contributor>Florencio L</contributor><creatorcontrib>Reali, A P</creatorcontrib><creatorcontrib>Penetra, R G</creatorcontrib><creatorcontrib>de Carvalho, M E</creatorcontrib><title>Flotation technique with coagulant and polymer application applied to the post-treatment of effluents from anaerobic reactor treating sewage</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>This paper presents the results of a study performed with a lab-scale batch DAF unit fed with previously coagulated (with FeCl3 and/or cationic polymer) effluent from a pilot-scale expanded bed anaerobic reactor treating domestic sewage. The association between ferric chloride and polymers was studied, aimed at sludge reduction. Ferric chloride dosages ranging from 15 to 65 mg.l-1, and polymer dosages from 0.25 to 7.0 mg.l-1 were investigated. Flocculation conditions were kept constant: 20 min of time (Tf) and 80 s-1 of mean velocity gradient (Gf). Air requirement was kept to 19.0 g of air.m-3 wastewater, using 20% recycle ratio and saturation pressure at 450 kPa. When the anaerobic reactor was operating at steady state conditions, it was possible to reduce the FeCl3 dosage from 65 to 30 mg.l-1 after applying 0.4 mg.l-1 of non-ionic polymer, before the DAF process. For these dosages, 79% COD removal (residual of 23 mg.l-1), 86% total phosphate removal (residual of 0.9 mg.l-1) and 98% turbidity removal (residual of 2.6 NTU) were observed. Furthermore, the use of adequate polymer together with 30 mgFeCl3.l-1 leads to the production of high rising rate flocs.</description><subject>Anaerobic conditions</subject><subject>Anaerobic treatment</subject><subject>Bacteria, Anaerobic - physiology</subject><subject>Bioreactors</subject><subject>Cationic polymerization</subject><subject>Cations</subject><subject>Chlorides</subject><subject>Coagulants</subject><subject>Dosage</subject><subject>Effluent treatment</subject><subject>Effluents</subject><subject>Ferric chloride</subject><subject>Ferric Compounds - chemistry</subject><subject>Flocculation</subject><subject>Flotation</subject><subject>Household wastes</subject><subject>Phosphates</subject><subject>Phosphorus - chemistry</subject><subject>Phosphorus removal</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Pressure</subject><subject>Reactors</subject><subject>Removal</subject><subject>Saturation</subject><subject>Sewage</subject><subject>Sewage treatment</subject><subject>Sludge</subject><subject>Turbidity</subject><subject>Velocity gradient</subject><subject>Velocity gradients</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>9781843394013</isbn><isbn>1843394014</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkU1r3DAQhkWa0Gy2OfZaBIXevJUsWx_HErpNIJBLexayNN51sC1Xkln2P-RHR95dKPQ0c3jmZWYehD5Tsikp598PMW1KQuiGlCW7QiuqFC-UYOUHdK-EpLJiTFWEsmu0IqVgBc3cLbqL8ZUQIlhFPqJbSmtRE8lX6G3b-2RS50ecwO7H7u8M-NClPbbe7ObejAmb0eHJ98cBAjbT1Hf2PHDqweHkcdpDRmIqUgCTBshTvsXQtv2c-4jb4IecYyD4prM4Qzb5gE90N-5whIPZwSd005o-wv2lrtGf7c_fD4_F88uvp4cfz4VllUyFFKR2knOuKicaqWrjSiq4aJwxjWwaIYxkShqlau5o64BLqCm0NRgilZVsjb6dc6fg870x6aGLFvp8Lfg5aipLIhlfwK__ga9-DmPeTVOVHy3zv1WmijNlg48xQKun0A0mHDUlepGmszS9SNOLtMx_uaTOzQDuH32xwt4BelWTVQ</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Reali, A P</creator><creator>Penetra, R G</creator><creator>de Carvalho, M E</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TV</scope></search><sort><creationdate>20010101</creationdate><title>Flotation technique with coagulant and polymer application applied to the post-treatment of effluents from anaerobic reactor treating sewage</title><author>Reali, A P ; Penetra, R G ; de Carvalho, M E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-8705d866694d7b895ad21767bdaab8bb77a8398a9956d1fde68e51ef5ea089c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Anaerobic conditions</topic><topic>Anaerobic treatment</topic><topic>Bacteria, Anaerobic - physiology</topic><topic>Bioreactors</topic><topic>Cationic polymerization</topic><topic>Cations</topic><topic>Chlorides</topic><topic>Coagulants</topic><topic>Dosage</topic><topic>Effluent treatment</topic><topic>Effluents</topic><topic>Ferric chloride</topic><topic>Ferric Compounds - chemistry</topic><topic>Flocculation</topic><topic>Flotation</topic><topic>Household wastes</topic><topic>Phosphates</topic><topic>Phosphorus - chemistry</topic><topic>Phosphorus removal</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Pressure</topic><topic>Reactors</topic><topic>Removal</topic><topic>Saturation</topic><topic>Sewage</topic><topic>Sewage treatment</topic><topic>Sludge</topic><topic>Turbidity</topic><topic>Velocity gradient</topic><topic>Velocity gradients</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reali, A P</creatorcontrib><creatorcontrib>Penetra, R G</creatorcontrib><creatorcontrib>de Carvalho, M E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Pollution Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reali, A P</au><au>Penetra, R G</au><au>de Carvalho, M E</au><au>Foresti, E</au><au>Kato, MK (eds)</au><au>Chernicharo, CAL</au><au>Florencio L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flotation technique with coagulant and polymer application applied to the post-treatment of effluents from anaerobic reactor treating sewage</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>44</volume><issue>4</issue><spage>205</spage><epage>212</epage><pages>205-212</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>9781843394013</isbn><isbn>1843394014</isbn><abstract>This paper presents the results of a study performed with a lab-scale batch DAF unit fed with previously coagulated (with FeCl3 and/or cationic polymer) effluent from a pilot-scale expanded bed anaerobic reactor treating domestic sewage. The association between ferric chloride and polymers was studied, aimed at sludge reduction. Ferric chloride dosages ranging from 15 to 65 mg.l-1, and polymer dosages from 0.25 to 7.0 mg.l-1 were investigated. Flocculation conditions were kept constant: 20 min of time (Tf) and 80 s-1 of mean velocity gradient (Gf). Air requirement was kept to 19.0 g of air.m-3 wastewater, using 20% recycle ratio and saturation pressure at 450 kPa. When the anaerobic reactor was operating at steady state conditions, it was possible to reduce the FeCl3 dosage from 65 to 30 mg.l-1 after applying 0.4 mg.l-1 of non-ionic polymer, before the DAF process. For these dosages, 79% COD removal (residual of 23 mg.l-1), 86% total phosphate removal (residual of 0.9 mg.l-1) and 98% turbidity removal (residual of 2.6 NTU) were observed. Furthermore, the use of adequate polymer together with 30 mgFeCl3.l-1 leads to the production of high rising rate flocs.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>11575086</pmid><doi>10.2166/wst.2001.0223</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2001-01, Vol.44 (4), p.205-212 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_18208368 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Anaerobic conditions Anaerobic treatment Bacteria, Anaerobic - physiology Bioreactors Cationic polymerization Cations Chlorides Coagulants Dosage Effluent treatment Effluents Ferric chloride Ferric Compounds - chemistry Flocculation Flotation Household wastes Phosphates Phosphorus - chemistry Phosphorus removal Polymers Polymers - chemistry Pressure Reactors Removal Saturation Sewage Sewage treatment Sludge Turbidity Velocity gradient Velocity gradients Waste Disposal, Fluid - methods Wastewater Wastewater treatment |
title | Flotation technique with coagulant and polymer application applied to the post-treatment of effluents from anaerobic reactor treating sewage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flotation%20technique%20with%20coagulant%20and%20polymer%20application%20applied%20to%20the%20post-treatment%20of%20effluents%20from%20anaerobic%20reactor%20treating%20sewage&rft.jtitle=Water%20science%20and%20technology&rft.au=Reali,%20A%20P&rft.date=2001-01-01&rft.volume=44&rft.issue=4&rft.spage=205&rft.epage=212&rft.pages=205-212&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=9781843394013&rft.isbn_list=1843394014&rft_id=info:doi/10.2166/wst.2001.0223&rft_dat=%3Cproquest_cross%3E18208368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943388189&rft_id=info:pmid/11575086&rfr_iscdi=true |