Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses
Five short-pulse radar profiles were run across the edge of inactive Ice Stream C, one of the “Ross” ice streams that flows from the West Antarctic inland ice sheet into the Ross Ice Shelf. Scatter from buried crevasses, which we presume were at the surface of the ice stream when it was active, crea...
Gespeichert in:
Veröffentlicht in: | Journal of glaciology 1993, Vol.39 (133), p.553-561 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 561 |
---|---|
container_issue | 133 |
container_start_page | 553 |
container_title | Journal of glaciology |
container_volume | 39 |
creator | Retzlaff, Rory Bentley, Charles R. |
description | Five short-pulse radar profiles were run across the edge of inactive Ice Stream C, one of the “Ross” ice streams that flows from the West Antarctic inland ice sheet into the Ross Ice Shelf. Scatter from buried crevasses, which we presume were at the surface of the ice stream when it was active, creates hyperbolae on the radar records. A density-depth curve and local accumulation rates were used to convert the picked travel times of the apices of the hyperbolae into stagnation ages for the ice stream. Stagnation ages are 130 ± 25 year for the three profiles farthest downstream and marginally less (100 ± 30 year) for the fourth. The profile farthest upstream shows a stagnation age of only ~30 year. We believe that these results indicate a “wave” of stagnation propagating at a diminishing speed upstream from the mouth of the ice stream, and we suggest that the stagnation process involves a drop in water pressure at the bed due to a conversion from sheet flow to channelized water flow. |
doi_str_mv | 10.3189/S0022143000016440 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18206874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_3189_S0022143000016440</cupid><sourcerecordid>18206874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-6796ccedde08fc928cf27b066074f4dab5489ad1859180121b70dc39128000e93</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxYMoWKsfwFtOnrqaZHezybEU_xQKHlrxuGSTbE3pbtpJVvDbm6XeBA2E8Jj3e8xkELql5D6nQj6sCWGMFjlJh_KiIGdoQitWZSUv2TmajOVsrF-iqxB2ScqS0gk6blzn-i32LQ5RbXsVne9HtdQWryNY1eHFDL_bEPG8jwp0dFrNcAu-w-HDQ8wOwz5YDMooSBmDcTaMAc0AzhocBmhVytJgP1UINlyji1Yl4ubnnaK3p8fN4iVbvT4vF_NVpnNJYsYrybW2xlgiWi2Z0C2rGsI5qYq2MKopCyGVoaKUVBDKaFMRk1DKRPoCK_MpujvlHsAfh9R_3bmg7X6veuuHUFPBCBdV8b-RlyLdMhnpyajBhwC2rQ_gOgVfNSX1uIX61xYSk_8wqmvAma2td36APk3-B_UNAa-I2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16581655</pqid></control><display><type>article</type><title>Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Retzlaff, Rory ; Bentley, Charles R.</creator><creatorcontrib>Retzlaff, Rory ; Bentley, Charles R.</creatorcontrib><description>Five short-pulse radar profiles were run across the edge of inactive Ice Stream C, one of the “Ross” ice streams that flows from the West Antarctic inland ice sheet into the Ross Ice Shelf. Scatter from buried crevasses, which we presume were at the surface of the ice stream when it was active, creates hyperbolae on the radar records. A density-depth curve and local accumulation rates were used to convert the picked travel times of the apices of the hyperbolae into stagnation ages for the ice stream. Stagnation ages are 130 ± 25 year for the three profiles farthest downstream and marginally less (100 ± 30 year) for the fourth. The profile farthest upstream shows a stagnation age of only ~30 year. We believe that these results indicate a “wave” of stagnation propagating at a diminishing speed upstream from the mouth of the ice stream, and we suggest that the stagnation process involves a drop in water pressure at the bed due to a conversion from sheet flow to channelized water flow.</description><identifier>ISSN: 0022-1430</identifier><identifier>EISSN: 1727-5652</identifier><identifier>DOI: 10.3189/S0022143000016440</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Journal of glaciology, 1993, Vol.39 (133), p.553-561</ispartof><rights>Copyright © International Glaciological Society 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-6796ccedde08fc928cf27b066074f4dab5489ad1859180121b70dc39128000e93</citedby><cites>FETCH-LOGICAL-c390t-6796ccedde08fc928cf27b066074f4dab5489ad1859180121b70dc39128000e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Retzlaff, Rory</creatorcontrib><creatorcontrib>Bentley, Charles R.</creatorcontrib><title>Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses</title><title>Journal of glaciology</title><addtitle>J. Glaciol</addtitle><description>Five short-pulse radar profiles were run across the edge of inactive Ice Stream C, one of the “Ross” ice streams that flows from the West Antarctic inland ice sheet into the Ross Ice Shelf. Scatter from buried crevasses, which we presume were at the surface of the ice stream when it was active, creates hyperbolae on the radar records. A density-depth curve and local accumulation rates were used to convert the picked travel times of the apices of the hyperbolae into stagnation ages for the ice stream. Stagnation ages are 130 ± 25 year for the three profiles farthest downstream and marginally less (100 ± 30 year) for the fourth. The profile farthest upstream shows a stagnation age of only ~30 year. We believe that these results indicate a “wave” of stagnation propagating at a diminishing speed upstream from the mouth of the ice stream, and we suggest that the stagnation process involves a drop in water pressure at the bed due to a conversion from sheet flow to channelized water flow.</description><issn>0022-1430</issn><issn>1727-5652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LAzEQxYMoWKsfwFtOnrqaZHezybEU_xQKHlrxuGSTbE3pbtpJVvDbm6XeBA2E8Jj3e8xkELql5D6nQj6sCWGMFjlJh_KiIGdoQitWZSUv2TmajOVsrF-iqxB2ScqS0gk6blzn-i32LQ5RbXsVne9HtdQWryNY1eHFDL_bEPG8jwp0dFrNcAu-w-HDQ8wOwz5YDMooSBmDcTaMAc0AzhocBmhVytJgP1UINlyji1Yl4ubnnaK3p8fN4iVbvT4vF_NVpnNJYsYrybW2xlgiWi2Z0C2rGsI5qYq2MKopCyGVoaKUVBDKaFMRk1DKRPoCK_MpujvlHsAfh9R_3bmg7X6veuuHUFPBCBdV8b-RlyLdMhnpyajBhwC2rQ_gOgVfNSX1uIX61xYSk_8wqmvAma2td36APk3-B_UNAa-I2w</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Retzlaff, Rory</creator><creator>Bentley, Charles R.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>1993</creationdate><title>Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses</title><author>Retzlaff, Rory ; Bentley, Charles R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-6796ccedde08fc928cf27b066074f4dab5489ad1859180121b70dc39128000e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Retzlaff, Rory</creatorcontrib><creatorcontrib>Bentley, Charles R.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of glaciology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Retzlaff, Rory</au><au>Bentley, Charles R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses</atitle><jtitle>Journal of glaciology</jtitle><addtitle>J. Glaciol</addtitle><date>1993</date><risdate>1993</risdate><volume>39</volume><issue>133</issue><spage>553</spage><epage>561</epage><pages>553-561</pages><issn>0022-1430</issn><eissn>1727-5652</eissn><abstract>Five short-pulse radar profiles were run across the edge of inactive Ice Stream C, one of the “Ross” ice streams that flows from the West Antarctic inland ice sheet into the Ross Ice Shelf. Scatter from buried crevasses, which we presume were at the surface of the ice stream when it was active, creates hyperbolae on the radar records. A density-depth curve and local accumulation rates were used to convert the picked travel times of the apices of the hyperbolae into stagnation ages for the ice stream. Stagnation ages are 130 ± 25 year for the three profiles farthest downstream and marginally less (100 ± 30 year) for the fourth. The profile farthest upstream shows a stagnation age of only ~30 year. We believe that these results indicate a “wave” of stagnation propagating at a diminishing speed upstream from the mouth of the ice stream, and we suggest that the stagnation process involves a drop in water pressure at the bed due to a conversion from sheet flow to channelized water flow.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.3189/S0022143000016440</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1430 |
ispartof | Journal of glaciology, 1993, Vol.39 (133), p.553-561 |
issn | 0022-1430 1727-5652 |
language | eng |
recordid | cdi_proquest_miscellaneous_18206874 |
source | EZB-FREE-00999 freely available EZB journals |
title | Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timing%20of%20stagnation%20of%20Ice%20Stream%20C,%20West%20Antarctica,%20from%20short-pulse%20radar%20studies%20of%20buried%20surface%20crevasses&rft.jtitle=Journal%20of%20glaciology&rft.au=Retzlaff,%20Rory&rft.date=1993&rft.volume=39&rft.issue=133&rft.spage=553&rft.epage=561&rft.pages=553-561&rft.issn=0022-1430&rft.eissn=1727-5652&rft_id=info:doi/10.3189/S0022143000016440&rft_dat=%3Cproquest_cross%3E18206874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16581655&rft_id=info:pmid/&rft_cupid=10_3189_S0022143000016440&rfr_iscdi=true |