Formation of a Spin-Forbidden Product, (1)[MnO4](-), from Gas-Phase Decomposition of (6)[Mn(NO3)3](.)
The manganese nitrate complex, [Mn(NO3)3](-), was generated via electrospray ionization and studied by tandem quadrupole mass spectrometry. The complex is assumed to decompose into [MnO(NO3)2](-) by elimination of NO2(•). The [MnO(NO3)2](-) product undergoes elimination of NO2(•) to yield [MnO2(NO3)...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2016-09, Vol.120 (36), p.7071-7079 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7079 |
---|---|
container_issue | 36 |
container_start_page | 7071 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 120 |
creator | Lightcap, Johnny Hester, Thomas H Patterson, Daniel Butler, Joseph T Goebbert, Daniel J |
description | The manganese nitrate complex, [Mn(NO3)3](-), was generated via electrospray ionization and studied by tandem quadrupole mass spectrometry. The complex is assumed to decompose into [MnO(NO3)2](-) by elimination of NO2(•). The [MnO(NO3)2](-) product undergoes elimination of NO2(•) to yield [MnO2(NO3)](-), or elimination of NO(•) to yield [MnO3(NO3)](-). Both [MnO2(NO3)](-) and [MnO3(NO3)](-) yield [MnO4](-) via the transfer of oxygen atoms from the remaining nitrate ligand. The mechanism of permanganate formation is interesting because it can be generated through two competing pathways, and because the singlet ground state is spin-forbidden from the high-spin sextet [Mn(NO3)3](-) precursor. Theory and experiment suggest [MnO2(NO3)](-) is the major intermediate leading to formation of [MnO4](-). Theoretical studies show crossing from the high-spin to low-spin surface upon neutral oxygen atom transfer from the nitrate ligand in [MnO2(NO3)](-) allows formation of (1)[MnO4](-). Relative energy differences for the formation of (1)[MnO4](-) and (1)[MnO3](-) predicted by theory agree with experiment. |
doi_str_mv | 10.1021/acs.jpca.6b06978 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1820602465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1820602465</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-44b38ffb7f3b035c6c05f5fd424bbec96a114f485fcdb1825d1cb572013ca0bf3</originalsourceid><addsrcrecordid>eNo1kEtLw0AAhBdBbK3ePckeE2jivpMepdoqVFNQT1LCPjGlycZscvDfG7E9DQzfDMwAcINRihHBd1KHdN9qmQqFxCLLz8AUc4ISTjCfgMsQ9gghTAm7ABOS8ZzTjE6BXfmuln3lG-gdlPCtrZpk9FRljG3gtvNm0P0cRjj-fGkKtouSeA5d52u4liHZfslg4YPVvm59qE49kfijo9eCxnQXpfEVOHfyEOz1UWfgY_X4vnxKNsX6eXm_SVpMRJ8wpmjunMocVYhyLTTijjvDCFPK6oWQGDPHcu60UTgn3GCteEbGWVoi5egMRP-9bee_Bxv6sq6CtoeDbKwfQjlmkECECT6it0d0ULU1ZdtVtex-ytM19Bec22Gk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820602465</pqid></control><display><type>article</type><title>Formation of a Spin-Forbidden Product, (1)[MnO4](-), from Gas-Phase Decomposition of (6)[Mn(NO3)3](.)</title><source>ACS Publications</source><creator>Lightcap, Johnny ; Hester, Thomas H ; Patterson, Daniel ; Butler, Joseph T ; Goebbert, Daniel J</creator><creatorcontrib>Lightcap, Johnny ; Hester, Thomas H ; Patterson, Daniel ; Butler, Joseph T ; Goebbert, Daniel J</creatorcontrib><description>The manganese nitrate complex, [Mn(NO3)3](-), was generated via electrospray ionization and studied by tandem quadrupole mass spectrometry. The complex is assumed to decompose into [MnO(NO3)2](-) by elimination of NO2(•). The [MnO(NO3)2](-) product undergoes elimination of NO2(•) to yield [MnO2(NO3)](-), or elimination of NO(•) to yield [MnO3(NO3)](-). Both [MnO2(NO3)](-) and [MnO3(NO3)](-) yield [MnO4](-) via the transfer of oxygen atoms from the remaining nitrate ligand. The mechanism of permanganate formation is interesting because it can be generated through two competing pathways, and because the singlet ground state is spin-forbidden from the high-spin sextet [Mn(NO3)3](-) precursor. Theory and experiment suggest [MnO2(NO3)](-) is the major intermediate leading to formation of [MnO4](-). Theoretical studies show crossing from the high-spin to low-spin surface upon neutral oxygen atom transfer from the nitrate ligand in [MnO2(NO3)](-) allows formation of (1)[MnO4](-). Relative energy differences for the formation of (1)[MnO4](-) and (1)[MnO3](-) predicted by theory agree with experiment.</description><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.6b06978</identifier><identifier>PMID: 27585373</identifier><language>eng</language><publisher>United States</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2016-09, Vol.120 (36), p.7071-7079</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27585373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lightcap, Johnny</creatorcontrib><creatorcontrib>Hester, Thomas H</creatorcontrib><creatorcontrib>Patterson, Daniel</creatorcontrib><creatorcontrib>Butler, Joseph T</creatorcontrib><creatorcontrib>Goebbert, Daniel J</creatorcontrib><title>Formation of a Spin-Forbidden Product, (1)[MnO4](-), from Gas-Phase Decomposition of (6)[Mn(NO3)3](.)</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J Phys Chem A</addtitle><description>The manganese nitrate complex, [Mn(NO3)3](-), was generated via electrospray ionization and studied by tandem quadrupole mass spectrometry. The complex is assumed to decompose into [MnO(NO3)2](-) by elimination of NO2(•). The [MnO(NO3)2](-) product undergoes elimination of NO2(•) to yield [MnO2(NO3)](-), or elimination of NO(•) to yield [MnO3(NO3)](-). Both [MnO2(NO3)](-) and [MnO3(NO3)](-) yield [MnO4](-) via the transfer of oxygen atoms from the remaining nitrate ligand. The mechanism of permanganate formation is interesting because it can be generated through two competing pathways, and because the singlet ground state is spin-forbidden from the high-spin sextet [Mn(NO3)3](-) precursor. Theory and experiment suggest [MnO2(NO3)](-) is the major intermediate leading to formation of [MnO4](-). Theoretical studies show crossing from the high-spin to low-spin surface upon neutral oxygen atom transfer from the nitrate ligand in [MnO2(NO3)](-) allows formation of (1)[MnO4](-). Relative energy differences for the formation of (1)[MnO4](-) and (1)[MnO3](-) predicted by theory agree with experiment.</description><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLw0AAhBdBbK3ePckeE2jivpMepdoqVFNQT1LCPjGlycZscvDfG7E9DQzfDMwAcINRihHBd1KHdN9qmQqFxCLLz8AUc4ISTjCfgMsQ9gghTAm7ABOS8ZzTjE6BXfmuln3lG-gdlPCtrZpk9FRljG3gtvNm0P0cRjj-fGkKtouSeA5d52u4liHZfslg4YPVvm59qE49kfijo9eCxnQXpfEVOHfyEOz1UWfgY_X4vnxKNsX6eXm_SVpMRJ8wpmjunMocVYhyLTTijjvDCFPK6oWQGDPHcu60UTgn3GCteEbGWVoi5egMRP-9bee_Bxv6sq6CtoeDbKwfQjlmkECECT6it0d0ULU1ZdtVtex-ytM19Bec22Gk</recordid><startdate>20160915</startdate><enddate>20160915</enddate><creator>Lightcap, Johnny</creator><creator>Hester, Thomas H</creator><creator>Patterson, Daniel</creator><creator>Butler, Joseph T</creator><creator>Goebbert, Daniel J</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160915</creationdate><title>Formation of a Spin-Forbidden Product, (1)[MnO4](-), from Gas-Phase Decomposition of (6)[Mn(NO3)3](.)</title><author>Lightcap, Johnny ; Hester, Thomas H ; Patterson, Daniel ; Butler, Joseph T ; Goebbert, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-44b38ffb7f3b035c6c05f5fd424bbec96a114f485fcdb1825d1cb572013ca0bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lightcap, Johnny</creatorcontrib><creatorcontrib>Hester, Thomas H</creatorcontrib><creatorcontrib>Patterson, Daniel</creatorcontrib><creatorcontrib>Butler, Joseph T</creatorcontrib><creatorcontrib>Goebbert, Daniel J</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lightcap, Johnny</au><au>Hester, Thomas H</au><au>Patterson, Daniel</au><au>Butler, Joseph T</au><au>Goebbert, Daniel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of a Spin-Forbidden Product, (1)[MnO4](-), from Gas-Phase Decomposition of (6)[Mn(NO3)3](.)</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J Phys Chem A</addtitle><date>2016-09-15</date><risdate>2016</risdate><volume>120</volume><issue>36</issue><spage>7071</spage><epage>7079</epage><pages>7071-7079</pages><eissn>1520-5215</eissn><abstract>The manganese nitrate complex, [Mn(NO3)3](-), was generated via electrospray ionization and studied by tandem quadrupole mass spectrometry. The complex is assumed to decompose into [MnO(NO3)2](-) by elimination of NO2(•). The [MnO(NO3)2](-) product undergoes elimination of NO2(•) to yield [MnO2(NO3)](-), or elimination of NO(•) to yield [MnO3(NO3)](-). Both [MnO2(NO3)](-) and [MnO3(NO3)](-) yield [MnO4](-) via the transfer of oxygen atoms from the remaining nitrate ligand. The mechanism of permanganate formation is interesting because it can be generated through two competing pathways, and because the singlet ground state is spin-forbidden from the high-spin sextet [Mn(NO3)3](-) precursor. Theory and experiment suggest [MnO2(NO3)](-) is the major intermediate leading to formation of [MnO4](-). Theoretical studies show crossing from the high-spin to low-spin surface upon neutral oxygen atom transfer from the nitrate ligand in [MnO2(NO3)](-) allows formation of (1)[MnO4](-). Relative energy differences for the formation of (1)[MnO4](-) and (1)[MnO3](-) predicted by theory agree with experiment.</abstract><cop>United States</cop><pmid>27585373</pmid><doi>10.1021/acs.jpca.6b06978</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1520-5215 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2016-09, Vol.120 (36), p.7071-7079 |
issn | 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1820602465 |
source | ACS Publications |
title | Formation of a Spin-Forbidden Product, (1)[MnO4](-), from Gas-Phase Decomposition of (6)[Mn(NO3)3](.) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20a%20Spin-Forbidden%20Product,%20(1)%5BMnO4%5D(-),%20from%20Gas-Phase%20Decomposition%20of%20(6)%5BMn(NO3)3%5D(.)&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Lightcap,%20Johnny&rft.date=2016-09-15&rft.volume=120&rft.issue=36&rft.spage=7071&rft.epage=7079&rft.pages=7071-7079&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.6b06978&rft_dat=%3Cproquest_pubme%3E1820602465%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820602465&rft_id=info:pmid/27585373&rfr_iscdi=true |