Formation of a Spin-Forbidden Product, (1)[MnO4](-), from Gas-Phase Decomposition of (6)[Mn(NO3)3](.)

The manganese nitrate complex, [Mn(NO3)3](-), was generated via electrospray ionization and studied by tandem quadrupole mass spectrometry. The complex is assumed to decompose into [MnO(NO3)2](-) by elimination of NO2(•). The [MnO(NO3)2](-) product undergoes elimination of NO2(•) to yield [MnO2(NO3)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2016-09, Vol.120 (36), p.7071-7079
Hauptverfasser: Lightcap, Johnny, Hester, Thomas H, Patterson, Daniel, Butler, Joseph T, Goebbert, Daniel J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7079
container_issue 36
container_start_page 7071
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 120
creator Lightcap, Johnny
Hester, Thomas H
Patterson, Daniel
Butler, Joseph T
Goebbert, Daniel J
description The manganese nitrate complex, [Mn(NO3)3](-), was generated via electrospray ionization and studied by tandem quadrupole mass spectrometry. The complex is assumed to decompose into [MnO(NO3)2](-) by elimination of NO2(•). The [MnO(NO3)2](-) product undergoes elimination of NO2(•) to yield [MnO2(NO3)](-), or elimination of NO(•) to yield [MnO3(NO3)](-). Both [MnO2(NO3)](-) and [MnO3(NO3)](-) yield [MnO4](-) via the transfer of oxygen atoms from the remaining nitrate ligand. The mechanism of permanganate formation is interesting because it can be generated through two competing pathways, and because the singlet ground state is spin-forbidden from the high-spin sextet [Mn(NO3)3](-) precursor. Theory and experiment suggest [MnO2(NO3)](-) is the major intermediate leading to formation of [MnO4](-). Theoretical studies show crossing from the high-spin to low-spin surface upon neutral oxygen atom transfer from the nitrate ligand in [MnO2(NO3)](-) allows formation of (1)[MnO4](-). Relative energy differences for the formation of (1)[MnO4](-) and (1)[MnO3](-) predicted by theory agree with experiment.
doi_str_mv 10.1021/acs.jpca.6b06978
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1820602465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1820602465</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-44b38ffb7f3b035c6c05f5fd424bbec96a114f485fcdb1825d1cb572013ca0bf3</originalsourceid><addsrcrecordid>eNo1kEtLw0AAhBdBbK3ePckeE2jivpMepdoqVFNQT1LCPjGlycZscvDfG7E9DQzfDMwAcINRihHBd1KHdN9qmQqFxCLLz8AUc4ISTjCfgMsQ9gghTAm7ABOS8ZzTjE6BXfmuln3lG-gdlPCtrZpk9FRljG3gtvNm0P0cRjj-fGkKtouSeA5d52u4liHZfslg4YPVvm59qE49kfijo9eCxnQXpfEVOHfyEOz1UWfgY_X4vnxKNsX6eXm_SVpMRJ8wpmjunMocVYhyLTTijjvDCFPK6oWQGDPHcu60UTgn3GCteEbGWVoi5egMRP-9bee_Bxv6sq6CtoeDbKwfQjlmkECECT6it0d0ULU1ZdtVtex-ytM19Bec22Gk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820602465</pqid></control><display><type>article</type><title>Formation of a Spin-Forbidden Product, (1)[MnO4](-), from Gas-Phase Decomposition of (6)[Mn(NO3)3](.)</title><source>ACS Publications</source><creator>Lightcap, Johnny ; Hester, Thomas H ; Patterson, Daniel ; Butler, Joseph T ; Goebbert, Daniel J</creator><creatorcontrib>Lightcap, Johnny ; Hester, Thomas H ; Patterson, Daniel ; Butler, Joseph T ; Goebbert, Daniel J</creatorcontrib><description>The manganese nitrate complex, [Mn(NO3)3](-), was generated via electrospray ionization and studied by tandem quadrupole mass spectrometry. The complex is assumed to decompose into [MnO(NO3)2](-) by elimination of NO2(•). The [MnO(NO3)2](-) product undergoes elimination of NO2(•) to yield [MnO2(NO3)](-), or elimination of NO(•) to yield [MnO3(NO3)](-). Both [MnO2(NO3)](-) and [MnO3(NO3)](-) yield [MnO4](-) via the transfer of oxygen atoms from the remaining nitrate ligand. The mechanism of permanganate formation is interesting because it can be generated through two competing pathways, and because the singlet ground state is spin-forbidden from the high-spin sextet [Mn(NO3)3](-) precursor. Theory and experiment suggest [MnO2(NO3)](-) is the major intermediate leading to formation of [MnO4](-). Theoretical studies show crossing from the high-spin to low-spin surface upon neutral oxygen atom transfer from the nitrate ligand in [MnO2(NO3)](-) allows formation of (1)[MnO4](-). Relative energy differences for the formation of (1)[MnO4](-) and (1)[MnO3](-) predicted by theory agree with experiment.</description><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.6b06978</identifier><identifier>PMID: 27585373</identifier><language>eng</language><publisher>United States</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2016-09, Vol.120 (36), p.7071-7079</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27585373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lightcap, Johnny</creatorcontrib><creatorcontrib>Hester, Thomas H</creatorcontrib><creatorcontrib>Patterson, Daniel</creatorcontrib><creatorcontrib>Butler, Joseph T</creatorcontrib><creatorcontrib>Goebbert, Daniel J</creatorcontrib><title>Formation of a Spin-Forbidden Product, (1)[MnO4](-), from Gas-Phase Decomposition of (6)[Mn(NO3)3](.)</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J Phys Chem A</addtitle><description>The manganese nitrate complex, [Mn(NO3)3](-), was generated via electrospray ionization and studied by tandem quadrupole mass spectrometry. The complex is assumed to decompose into [MnO(NO3)2](-) by elimination of NO2(•). The [MnO(NO3)2](-) product undergoes elimination of NO2(•) to yield [MnO2(NO3)](-), or elimination of NO(•) to yield [MnO3(NO3)](-). Both [MnO2(NO3)](-) and [MnO3(NO3)](-) yield [MnO4](-) via the transfer of oxygen atoms from the remaining nitrate ligand. The mechanism of permanganate formation is interesting because it can be generated through two competing pathways, and because the singlet ground state is spin-forbidden from the high-spin sextet [Mn(NO3)3](-) precursor. Theory and experiment suggest [MnO2(NO3)](-) is the major intermediate leading to formation of [MnO4](-). Theoretical studies show crossing from the high-spin to low-spin surface upon neutral oxygen atom transfer from the nitrate ligand in [MnO2(NO3)](-) allows formation of (1)[MnO4](-). Relative energy differences for the formation of (1)[MnO4](-) and (1)[MnO3](-) predicted by theory agree with experiment.</description><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLw0AAhBdBbK3ePckeE2jivpMepdoqVFNQT1LCPjGlycZscvDfG7E9DQzfDMwAcINRihHBd1KHdN9qmQqFxCLLz8AUc4ISTjCfgMsQ9gghTAm7ABOS8ZzTjE6BXfmuln3lG-gdlPCtrZpk9FRljG3gtvNm0P0cRjj-fGkKtouSeA5d52u4liHZfslg4YPVvm59qE49kfijo9eCxnQXpfEVOHfyEOz1UWfgY_X4vnxKNsX6eXm_SVpMRJ8wpmjunMocVYhyLTTijjvDCFPK6oWQGDPHcu60UTgn3GCteEbGWVoi5egMRP-9bee_Bxv6sq6CtoeDbKwfQjlmkECECT6it0d0ULU1ZdtVtex-ytM19Bec22Gk</recordid><startdate>20160915</startdate><enddate>20160915</enddate><creator>Lightcap, Johnny</creator><creator>Hester, Thomas H</creator><creator>Patterson, Daniel</creator><creator>Butler, Joseph T</creator><creator>Goebbert, Daniel J</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160915</creationdate><title>Formation of a Spin-Forbidden Product, (1)[MnO4](-), from Gas-Phase Decomposition of (6)[Mn(NO3)3](.)</title><author>Lightcap, Johnny ; Hester, Thomas H ; Patterson, Daniel ; Butler, Joseph T ; Goebbert, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-44b38ffb7f3b035c6c05f5fd424bbec96a114f485fcdb1825d1cb572013ca0bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lightcap, Johnny</creatorcontrib><creatorcontrib>Hester, Thomas H</creatorcontrib><creatorcontrib>Patterson, Daniel</creatorcontrib><creatorcontrib>Butler, Joseph T</creatorcontrib><creatorcontrib>Goebbert, Daniel J</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lightcap, Johnny</au><au>Hester, Thomas H</au><au>Patterson, Daniel</au><au>Butler, Joseph T</au><au>Goebbert, Daniel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of a Spin-Forbidden Product, (1)[MnO4](-), from Gas-Phase Decomposition of (6)[Mn(NO3)3](.)</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J Phys Chem A</addtitle><date>2016-09-15</date><risdate>2016</risdate><volume>120</volume><issue>36</issue><spage>7071</spage><epage>7079</epage><pages>7071-7079</pages><eissn>1520-5215</eissn><abstract>The manganese nitrate complex, [Mn(NO3)3](-), was generated via electrospray ionization and studied by tandem quadrupole mass spectrometry. The complex is assumed to decompose into [MnO(NO3)2](-) by elimination of NO2(•). The [MnO(NO3)2](-) product undergoes elimination of NO2(•) to yield [MnO2(NO3)](-), or elimination of NO(•) to yield [MnO3(NO3)](-). Both [MnO2(NO3)](-) and [MnO3(NO3)](-) yield [MnO4](-) via the transfer of oxygen atoms from the remaining nitrate ligand. The mechanism of permanganate formation is interesting because it can be generated through two competing pathways, and because the singlet ground state is spin-forbidden from the high-spin sextet [Mn(NO3)3](-) precursor. Theory and experiment suggest [MnO2(NO3)](-) is the major intermediate leading to formation of [MnO4](-). Theoretical studies show crossing from the high-spin to low-spin surface upon neutral oxygen atom transfer from the nitrate ligand in [MnO2(NO3)](-) allows formation of (1)[MnO4](-). Relative energy differences for the formation of (1)[MnO4](-) and (1)[MnO3](-) predicted by theory agree with experiment.</abstract><cop>United States</cop><pmid>27585373</pmid><doi>10.1021/acs.jpca.6b06978</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1520-5215
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2016-09, Vol.120 (36), p.7071-7079
issn 1520-5215
language eng
recordid cdi_proquest_miscellaneous_1820602465
source ACS Publications
title Formation of a Spin-Forbidden Product, (1)[MnO4](-), from Gas-Phase Decomposition of (6)[Mn(NO3)3](.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20a%20Spin-Forbidden%20Product,%20(1)%5BMnO4%5D(-),%20from%20Gas-Phase%20Decomposition%20of%20(6)%5BMn(NO3)3%5D(.)&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Lightcap,%20Johnny&rft.date=2016-09-15&rft.volume=120&rft.issue=36&rft.spage=7071&rft.epage=7079&rft.pages=7071-7079&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.6b06978&rft_dat=%3Cproquest_pubme%3E1820602465%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820602465&rft_id=info:pmid/27585373&rfr_iscdi=true