Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients
We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2016-08, Vol.94 (2-1), p.022207-022207, Article 022207 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 022207 |
---|---|
container_issue | 2-1 |
container_start_page | 022207 |
container_title | Physical review. E |
container_volume | 94 |
creator | Charalampidis, E G Kevrekidis, P G Frantzeskakis, D J Malomed, B A |
description | We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities. |
doi_str_mv | 10.1103/PhysRevE.94.022207 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1820595554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1820595554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-3a6af0b4be9827e2ecbf815401ef3dfaf8dceda5e3807046c0a24f0ab56db1653</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0Eoqj0B1igLNmkXDt2HktUlYdUCcRrGznONTVK7dZOoP0xfoAfo6WP1b0zmpnFIeSCwpBSSK6fpqvwjF_jYcGHwBiD7IicMZ5BDCCS48PPRY8MQvgEAJpCkVF2SnosS1nGivyMmHfnW1zGwTWmdTZSbjZvcIkhMhvRrUUdWWcbY1H66EVN_e9PbewH-ggXnWyNsyH6Nu006uzGaKLahDn6YP7XUGujDNo2nJMTLZuAg93tk7fb8evoPp483j2MbiaxSoq0jROZSg0Vr7DIWYYMVaVzKjhQ1Emtpc5rhbUUmOSQAU8VSMY1yEqkdUVTkfTJ1XZ37t2iw9CWMxMUNo206LpQ0pyBKIQQfB1l26jyLgSPupx7M5N-VVIoN5TLPeWy4OWW8rp0udvvqhnWh8qeafIHqMt-Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820595554</pqid></control><display><type>article</type><title>Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients</title><source>American Physical Society Journals</source><creator>Charalampidis, E G ; Kevrekidis, P G ; Frantzeskakis, D J ; Malomed, B A</creator><creatorcontrib>Charalampidis, E G ; Kevrekidis, P G ; Frantzeskakis, D J ; Malomed, B A</creatorcontrib><description>We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.94.022207</identifier><identifier>PMID: 27627298</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2016-08, Vol.94 (2-1), p.022207-022207, Article 022207</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-3a6af0b4be9827e2ecbf815401ef3dfaf8dceda5e3807046c0a24f0ab56db1653</citedby><cites>FETCH-LOGICAL-c396t-3a6af0b4be9827e2ecbf815401ef3dfaf8dceda5e3807046c0a24f0ab56db1653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27627298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Charalampidis, E G</creatorcontrib><creatorcontrib>Kevrekidis, P G</creatorcontrib><creatorcontrib>Frantzeskakis, D J</creatorcontrib><creatorcontrib>Malomed, B A</creatorcontrib><title>Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURC0Eoqj0B1igLNmkXDt2HktUlYdUCcRrGznONTVK7dZOoP0xfoAfo6WP1b0zmpnFIeSCwpBSSK6fpqvwjF_jYcGHwBiD7IicMZ5BDCCS48PPRY8MQvgEAJpCkVF2SnosS1nGivyMmHfnW1zGwTWmdTZSbjZvcIkhMhvRrUUdWWcbY1H66EVN_e9PbewH-ggXnWyNsyH6Nu006uzGaKLahDn6YP7XUGujDNo2nJMTLZuAg93tk7fb8evoPp483j2MbiaxSoq0jROZSg0Vr7DIWYYMVaVzKjhQ1Emtpc5rhbUUmOSQAU8VSMY1yEqkdUVTkfTJ1XZ37t2iw9CWMxMUNo206LpQ0pyBKIQQfB1l26jyLgSPupx7M5N-VVIoN5TLPeWy4OWW8rp0udvvqhnWh8qeafIHqMt-Sg</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Charalampidis, E G</creator><creator>Kevrekidis, P G</creator><creator>Frantzeskakis, D J</creator><creator>Malomed, B A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients</title><author>Charalampidis, E G ; Kevrekidis, P G ; Frantzeskakis, D J ; Malomed, B A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-3a6af0b4be9827e2ecbf815401ef3dfaf8dceda5e3807046c0a24f0ab56db1653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charalampidis, E G</creatorcontrib><creatorcontrib>Kevrekidis, P G</creatorcontrib><creatorcontrib>Frantzeskakis, D J</creatorcontrib><creatorcontrib>Malomed, B A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charalampidis, E G</au><au>Kevrekidis, P G</au><au>Frantzeskakis, D J</au><au>Malomed, B A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2016-08</date><risdate>2016</risdate><volume>94</volume><issue>2-1</issue><spage>022207</spage><epage>022207</epage><pages>022207-022207</pages><artnum>022207</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.</abstract><cop>United States</cop><pmid>27627298</pmid><doi>10.1103/PhysRevE.94.022207</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2016-08, Vol.94 (2-1), p.022207-022207, Article 022207 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_1820595554 |
source | American Physical Society Journals |
title | Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex-soliton%20complexes%20in%20coupled%20nonlinear%20Schr%C3%B6dinger%20equations%20with%20unequal%20dispersion%20coefficients&rft.jtitle=Physical%20review.%20E&rft.au=Charalampidis,%20E%20G&rft.date=2016-08&rft.volume=94&rft.issue=2-1&rft.spage=022207&rft.epage=022207&rft.pages=022207-022207&rft.artnum=022207&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.94.022207&rft_dat=%3Cproquest_cross%3E1820595554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820595554&rft_id=info:pmid/27627298&rfr_iscdi=true |