Optimal growth trajectories with finite carrying capacity
We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a cons...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2016-08, Vol.94 (2-1), p.022315-022315, Article 022315 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 022315 |
---|---|
container_issue | 2-1 |
container_start_page | 022315 |
container_title | Physical review. E |
container_volume | 94 |
creator | Caravelli, F Sindoni, L Caccioli, F Ududec, C |
description | We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations. |
doi_str_mv | 10.1103/PhysRevE.94.022315 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1820593115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1820593115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-803adcd73a7287cab25258fa2483775fd5ed49cb3b2ba5aab0febe666591ccb33</originalsourceid><addsrcrecordid>eNo9kMtqwzAUREVpaUKaH-iieNmNXenKsqxlCekDAimlXQtJlhMFJ3YlpcF_X5c8VncYZgbuQeie4IwQTJ8-1n34tL_zTOQZBqCEXaEx5BynGDN6fdE5G6FpCBuMMSmw4ARu0Qh4AZwCGyOx7KLbqiZZ-fYQ10n0amNNbL2zITm4wandzkWbGOV973arQXTKuNjfoZtaNcFOT3eCvl_mX7O3dLF8fZ89L1JDcx7TElNVmYpTxaHkRmlgwMpaQV5SzlldMVvlwmiqQSumlMa11bYoCiaIGWw6QY_H3c63P3sboty6YGzTqJ1t90GSEjATlBA2ROEYNb4Nwdtadn54zveSYPlPTZ6pSZHLI7Wh9HDa3-utrS6VMyP6B3PdamU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820593115</pqid></control><display><type>article</type><title>Optimal growth trajectories with finite carrying capacity</title><source>American Physical Society Journals</source><creator>Caravelli, F ; Sindoni, L ; Caccioli, F ; Ududec, C</creator><creatorcontrib>Caravelli, F ; Sindoni, L ; Caccioli, F ; Ududec, C</creatorcontrib><description>We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.94.022315</identifier><identifier>PMID: 27627325</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2016-08, Vol.94 (2-1), p.022315-022315, Article 022315</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-803adcd73a7287cab25258fa2483775fd5ed49cb3b2ba5aab0febe666591ccb33</citedby><cites>FETCH-LOGICAL-c347t-803adcd73a7287cab25258fa2483775fd5ed49cb3b2ba5aab0febe666591ccb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27627325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caravelli, F</creatorcontrib><creatorcontrib>Sindoni, L</creatorcontrib><creatorcontrib>Caccioli, F</creatorcontrib><creatorcontrib>Ududec, C</creatorcontrib><title>Optimal growth trajectories with finite carrying capacity</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kMtqwzAUREVpaUKaH-iieNmNXenKsqxlCekDAimlXQtJlhMFJ3YlpcF_X5c8VncYZgbuQeie4IwQTJ8-1n34tL_zTOQZBqCEXaEx5BynGDN6fdE5G6FpCBuMMSmw4ARu0Qh4AZwCGyOx7KLbqiZZ-fYQ10n0amNNbL2zITm4wandzkWbGOV973arQXTKuNjfoZtaNcFOT3eCvl_mX7O3dLF8fZ89L1JDcx7TElNVmYpTxaHkRmlgwMpaQV5SzlldMVvlwmiqQSumlMa11bYoCiaIGWw6QY_H3c63P3sboty6YGzTqJ1t90GSEjATlBA2ROEYNb4Nwdtadn54zveSYPlPTZ6pSZHLI7Wh9HDa3-utrS6VMyP6B3PdamU</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Caravelli, F</creator><creator>Sindoni, L</creator><creator>Caccioli, F</creator><creator>Ududec, C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Optimal growth trajectories with finite carrying capacity</title><author>Caravelli, F ; Sindoni, L ; Caccioli, F ; Ududec, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-803adcd73a7287cab25258fa2483775fd5ed49cb3b2ba5aab0febe666591ccb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caravelli, F</creatorcontrib><creatorcontrib>Sindoni, L</creatorcontrib><creatorcontrib>Caccioli, F</creatorcontrib><creatorcontrib>Ududec, C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caravelli, F</au><au>Sindoni, L</au><au>Caccioli, F</au><au>Ududec, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal growth trajectories with finite carrying capacity</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2016-08</date><risdate>2016</risdate><volume>94</volume><issue>2-1</issue><spage>022315</spage><epage>022315</epage><pages>022315-022315</pages><artnum>022315</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.</abstract><cop>United States</cop><pmid>27627325</pmid><doi>10.1103/PhysRevE.94.022315</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2016-08, Vol.94 (2-1), p.022315-022315, Article 022315 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_1820593115 |
source | American Physical Society Journals |
title | Optimal growth trajectories with finite carrying capacity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20growth%20trajectories%20with%20finite%20carrying%20capacity&rft.jtitle=Physical%20review.%20E&rft.au=Caravelli,%20F&rft.date=2016-08&rft.volume=94&rft.issue=2-1&rft.spage=022315&rft.epage=022315&rft.pages=022315-022315&rft.artnum=022315&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.94.022315&rft_dat=%3Cproquest_cross%3E1820593115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820593115&rft_id=info:pmid/27627325&rfr_iscdi=true |