Optimal growth trajectories with finite carrying capacity

We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2016-08, Vol.94 (2-1), p.022315-022315, Article 022315
Hauptverfasser: Caravelli, F, Sindoni, L, Caccioli, F, Ududec, C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 022315
container_issue 2-1
container_start_page 022315
container_title Physical review. E
container_volume 94
creator Caravelli, F
Sindoni, L
Caccioli, F
Ududec, C
description We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.
doi_str_mv 10.1103/PhysRevE.94.022315
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1820593115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1820593115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-803adcd73a7287cab25258fa2483775fd5ed49cb3b2ba5aab0febe666591ccb33</originalsourceid><addsrcrecordid>eNo9kMtqwzAUREVpaUKaH-iieNmNXenKsqxlCekDAimlXQtJlhMFJ3YlpcF_X5c8VncYZgbuQeie4IwQTJ8-1n34tL_zTOQZBqCEXaEx5BynGDN6fdE5G6FpCBuMMSmw4ARu0Qh4AZwCGyOx7KLbqiZZ-fYQ10n0amNNbL2zITm4wandzkWbGOV973arQXTKuNjfoZtaNcFOT3eCvl_mX7O3dLF8fZ89L1JDcx7TElNVmYpTxaHkRmlgwMpaQV5SzlldMVvlwmiqQSumlMa11bYoCiaIGWw6QY_H3c63P3sboty6YGzTqJ1t90GSEjATlBA2ROEYNb4Nwdtadn54zveSYPlPTZ6pSZHLI7Wh9HDa3-utrS6VMyP6B3PdamU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820593115</pqid></control><display><type>article</type><title>Optimal growth trajectories with finite carrying capacity</title><source>American Physical Society Journals</source><creator>Caravelli, F ; Sindoni, L ; Caccioli, F ; Ududec, C</creator><creatorcontrib>Caravelli, F ; Sindoni, L ; Caccioli, F ; Ududec, C</creatorcontrib><description>We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.94.022315</identifier><identifier>PMID: 27627325</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2016-08, Vol.94 (2-1), p.022315-022315, Article 022315</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-803adcd73a7287cab25258fa2483775fd5ed49cb3b2ba5aab0febe666591ccb33</citedby><cites>FETCH-LOGICAL-c347t-803adcd73a7287cab25258fa2483775fd5ed49cb3b2ba5aab0febe666591ccb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27627325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caravelli, F</creatorcontrib><creatorcontrib>Sindoni, L</creatorcontrib><creatorcontrib>Caccioli, F</creatorcontrib><creatorcontrib>Ududec, C</creatorcontrib><title>Optimal growth trajectories with finite carrying capacity</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kMtqwzAUREVpaUKaH-iieNmNXenKsqxlCekDAimlXQtJlhMFJ3YlpcF_X5c8VncYZgbuQeie4IwQTJ8-1n34tL_zTOQZBqCEXaEx5BynGDN6fdE5G6FpCBuMMSmw4ARu0Qh4AZwCGyOx7KLbqiZZ-fYQ10n0amNNbL2zITm4wandzkWbGOV973arQXTKuNjfoZtaNcFOT3eCvl_mX7O3dLF8fZ89L1JDcx7TElNVmYpTxaHkRmlgwMpaQV5SzlldMVvlwmiqQSumlMa11bYoCiaIGWw6QY_H3c63P3sboty6YGzTqJ1t90GSEjATlBA2ROEYNb4Nwdtadn54zveSYPlPTZ6pSZHLI7Wh9HDa3-utrS6VMyP6B3PdamU</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Caravelli, F</creator><creator>Sindoni, L</creator><creator>Caccioli, F</creator><creator>Ududec, C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Optimal growth trajectories with finite carrying capacity</title><author>Caravelli, F ; Sindoni, L ; Caccioli, F ; Ududec, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-803adcd73a7287cab25258fa2483775fd5ed49cb3b2ba5aab0febe666591ccb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caravelli, F</creatorcontrib><creatorcontrib>Sindoni, L</creatorcontrib><creatorcontrib>Caccioli, F</creatorcontrib><creatorcontrib>Ududec, C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caravelli, F</au><au>Sindoni, L</au><au>Caccioli, F</au><au>Ududec, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal growth trajectories with finite carrying capacity</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2016-08</date><risdate>2016</risdate><volume>94</volume><issue>2-1</issue><spage>022315</spage><epage>022315</epage><pages>022315-022315</pages><artnum>022315</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.</abstract><cop>United States</cop><pmid>27627325</pmid><doi>10.1103/PhysRevE.94.022315</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2016-08, Vol.94 (2-1), p.022315-022315, Article 022315
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_1820593115
source American Physical Society Journals
title Optimal growth trajectories with finite carrying capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20growth%20trajectories%20with%20finite%20carrying%20capacity&rft.jtitle=Physical%20review.%20E&rft.au=Caravelli,%20F&rft.date=2016-08&rft.volume=94&rft.issue=2-1&rft.spage=022315&rft.epage=022315&rft.pages=022315-022315&rft.artnum=022315&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.94.022315&rft_dat=%3Cproquest_cross%3E1820593115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820593115&rft_id=info:pmid/27627325&rfr_iscdi=true