Microfluidics-Produced Collagen Fibers Show Extraordinary Mechanical Properties

Collagens are widely used as biomaterials in drug-delivery and tissue engineering applications due to their biodegradability, biocompatibility and hypoallergenicity. Besides gelatin-based materials, collagen microfibers are in the focus of biomedical research. Commonly, man-made fibers are produced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2016-09, Vol.16 (9), p.5917-5922
Hauptverfasser: Haynl, Christian, Hofmann, Eddie, Pawar, Kiran, Förster, Stephan, Scheibel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5922
container_issue 9
container_start_page 5917
container_title Nano letters
container_volume 16
creator Haynl, Christian
Hofmann, Eddie
Pawar, Kiran
Förster, Stephan
Scheibel, Thomas
description Collagens are widely used as biomaterials in drug-delivery and tissue engineering applications due to their biodegradability, biocompatibility and hypoallergenicity. Besides gelatin-based materials, collagen microfibers are in the focus of biomedical research. Commonly, man-made fibers are produced by wet-spinning yielding fiber diameters higher than 8 μm. Here, assembly and continuous production of single collagen type I microfibers were established using a microfluidic chip. Microfluidics-produced microfibers exhibited tensile strength and Young’s modulus exceeding that of fibers produced in classical wet-spinning devices and even that of natural tendon and they showed lower diameters. Their structural orientation was examined by polarized Fourier transform infrared spectroscopy (FTIR) showing fibril alignment within the microfiber. Cell culture tests using the neuronal cell line NG108-15 showed cell alignment and axon growth along the microfiber axes inaugurating potential applications in, for example, peripheral nerve repair.
doi_str_mv 10.1021/acs.nanolett.6b02828
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1819906245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819906245</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-4ab04855810b513e8fd24cb925bbf8645cf0f3f03fa976501bb2cfad19c04e313</originalsourceid><addsrcrecordid>eNp9kEFPAjEQhRujEUT_gTF79LI47bZLezQE1ASCiXretN1WapYttrtR_70lgEdPM4f33sz7ELrGMMZA8J3UcdzK1jem68alAsIJP0FDzArISyHI6d_O6QBdxPgBAKJgcI4GZMJwAYIP0WrpdPC26V3tdMyfg697beps6ptGvps2mztlQsxe1v4rm313QfpQu1aGn2xp9Fq2TssmS7atCZ0z8RKdWdlEc3WYI_Q2n71OH_PF6uFper_IJWW4y6lUQDljHINKrxhua0K1EoQpZXlJmbZgCwuFlWJSMsBKEW1ljYUGagpcjNDtPncb_GdvYldtXNQmPd0a38cKcywElISyJKV7aSoaYzC22ga3SQ0qDNUOZZVQVkeU1QFlst0cLvRqY-o_05FdEsBesLN_-D60qfD_mb8V9IRv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819906245</pqid></control><display><type>article</type><title>Microfluidics-Produced Collagen Fibers Show Extraordinary Mechanical Properties</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Haynl, Christian ; Hofmann, Eddie ; Pawar, Kiran ; Förster, Stephan ; Scheibel, Thomas</creator><creatorcontrib>Haynl, Christian ; Hofmann, Eddie ; Pawar, Kiran ; Förster, Stephan ; Scheibel, Thomas</creatorcontrib><description>Collagens are widely used as biomaterials in drug-delivery and tissue engineering applications due to their biodegradability, biocompatibility and hypoallergenicity. Besides gelatin-based materials, collagen microfibers are in the focus of biomedical research. Commonly, man-made fibers are produced by wet-spinning yielding fiber diameters higher than 8 μm. Here, assembly and continuous production of single collagen type I microfibers were established using a microfluidic chip. Microfluidics-produced microfibers exhibited tensile strength and Young’s modulus exceeding that of fibers produced in classical wet-spinning devices and even that of natural tendon and they showed lower diameters. Their structural orientation was examined by polarized Fourier transform infrared spectroscopy (FTIR) showing fibril alignment within the microfiber. Cell culture tests using the neuronal cell line NG108-15 showed cell alignment and axon growth along the microfiber axes inaugurating potential applications in, for example, peripheral nerve repair.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.6b02828</identifier><identifier>PMID: 27513098</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Cell Line, Tumor ; Collagen Type I - chemistry ; Mice ; Microfluidics ; Rats ; Tensile Strength ; Tissue Engineering</subject><ispartof>Nano letters, 2016-09, Vol.16 (9), p.5917-5922</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-4ab04855810b513e8fd24cb925bbf8645cf0f3f03fa976501bb2cfad19c04e313</citedby><cites>FETCH-LOGICAL-a451t-4ab04855810b513e8fd24cb925bbf8645cf0f3f03fa976501bb2cfad19c04e313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.6b02828$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.6b02828$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27513098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haynl, Christian</creatorcontrib><creatorcontrib>Hofmann, Eddie</creatorcontrib><creatorcontrib>Pawar, Kiran</creatorcontrib><creatorcontrib>Förster, Stephan</creatorcontrib><creatorcontrib>Scheibel, Thomas</creatorcontrib><title>Microfluidics-Produced Collagen Fibers Show Extraordinary Mechanical Properties</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Collagens are widely used as biomaterials in drug-delivery and tissue engineering applications due to their biodegradability, biocompatibility and hypoallergenicity. Besides gelatin-based materials, collagen microfibers are in the focus of biomedical research. Commonly, man-made fibers are produced by wet-spinning yielding fiber diameters higher than 8 μm. Here, assembly and continuous production of single collagen type I microfibers were established using a microfluidic chip. Microfluidics-produced microfibers exhibited tensile strength and Young’s modulus exceeding that of fibers produced in classical wet-spinning devices and even that of natural tendon and they showed lower diameters. Their structural orientation was examined by polarized Fourier transform infrared spectroscopy (FTIR) showing fibril alignment within the microfiber. Cell culture tests using the neuronal cell line NG108-15 showed cell alignment and axon growth along the microfiber axes inaugurating potential applications in, for example, peripheral nerve repair.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cell Line, Tumor</subject><subject>Collagen Type I - chemistry</subject><subject>Mice</subject><subject>Microfluidics</subject><subject>Rats</subject><subject>Tensile Strength</subject><subject>Tissue Engineering</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFPAjEQhRujEUT_gTF79LI47bZLezQE1ASCiXretN1WapYttrtR_70lgEdPM4f33sz7ELrGMMZA8J3UcdzK1jem68alAsIJP0FDzArISyHI6d_O6QBdxPgBAKJgcI4GZMJwAYIP0WrpdPC26V3tdMyfg697beps6ptGvps2mztlQsxe1v4rm313QfpQu1aGn2xp9Fq2TssmS7atCZ0z8RKdWdlEc3WYI_Q2n71OH_PF6uFper_IJWW4y6lUQDljHINKrxhua0K1EoQpZXlJmbZgCwuFlWJSMsBKEW1ljYUGagpcjNDtPncb_GdvYldtXNQmPd0a38cKcywElISyJKV7aSoaYzC22ga3SQ0qDNUOZZVQVkeU1QFlst0cLvRqY-o_05FdEsBesLN_-D60qfD_mb8V9IRv</recordid><startdate>20160914</startdate><enddate>20160914</enddate><creator>Haynl, Christian</creator><creator>Hofmann, Eddie</creator><creator>Pawar, Kiran</creator><creator>Förster, Stephan</creator><creator>Scheibel, Thomas</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160914</creationdate><title>Microfluidics-Produced Collagen Fibers Show Extraordinary Mechanical Properties</title><author>Haynl, Christian ; Hofmann, Eddie ; Pawar, Kiran ; Förster, Stephan ; Scheibel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-4ab04855810b513e8fd24cb925bbf8645cf0f3f03fa976501bb2cfad19c04e313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cell Line, Tumor</topic><topic>Collagen Type I - chemistry</topic><topic>Mice</topic><topic>Microfluidics</topic><topic>Rats</topic><topic>Tensile Strength</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haynl, Christian</creatorcontrib><creatorcontrib>Hofmann, Eddie</creatorcontrib><creatorcontrib>Pawar, Kiran</creatorcontrib><creatorcontrib>Förster, Stephan</creatorcontrib><creatorcontrib>Scheibel, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haynl, Christian</au><au>Hofmann, Eddie</au><au>Pawar, Kiran</au><au>Förster, Stephan</au><au>Scheibel, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidics-Produced Collagen Fibers Show Extraordinary Mechanical Properties</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2016-09-14</date><risdate>2016</risdate><volume>16</volume><issue>9</issue><spage>5917</spage><epage>5922</epage><pages>5917-5922</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Collagens are widely used as biomaterials in drug-delivery and tissue engineering applications due to their biodegradability, biocompatibility and hypoallergenicity. Besides gelatin-based materials, collagen microfibers are in the focus of biomedical research. Commonly, man-made fibers are produced by wet-spinning yielding fiber diameters higher than 8 μm. Here, assembly and continuous production of single collagen type I microfibers were established using a microfluidic chip. Microfluidics-produced microfibers exhibited tensile strength and Young’s modulus exceeding that of fibers produced in classical wet-spinning devices and even that of natural tendon and they showed lower diameters. Their structural orientation was examined by polarized Fourier transform infrared spectroscopy (FTIR) showing fibril alignment within the microfiber. Cell culture tests using the neuronal cell line NG108-15 showed cell alignment and axon growth along the microfiber axes inaugurating potential applications in, for example, peripheral nerve repair.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27513098</pmid><doi>10.1021/acs.nanolett.6b02828</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2016-09, Vol.16 (9), p.5917-5922
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1819906245
source MEDLINE; American Chemical Society Journals
subjects Animals
Biocompatible Materials - chemistry
Cell Line, Tumor
Collagen Type I - chemistry
Mice
Microfluidics
Rats
Tensile Strength
Tissue Engineering
title Microfluidics-Produced Collagen Fibers Show Extraordinary Mechanical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidics-Produced%20Collagen%20Fibers%20Show%20Extraordinary%20Mechanical%20Properties&rft.jtitle=Nano%20letters&rft.au=Haynl,%20Christian&rft.date=2016-09-14&rft.volume=16&rft.issue=9&rft.spage=5917&rft.epage=5922&rft.pages=5917-5922&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.6b02828&rft_dat=%3Cproquest_cross%3E1819906245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819906245&rft_id=info:pmid/27513098&rfr_iscdi=true