Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3

Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2016-09, Vol.143 (18), p.3340-3349
Hauptverfasser: Porco, Silvana, Larrieu, Antoine, Du, Yujuan, Gaudinier, Allison, Goh, Tatsuaki, Swarup, Kamal, Swarup, Ranjan, Kuempers, Britta, Bishopp, Anthony, Lavenus, Julien, Casimiro, Ilda, Hill, Kristine, Benkova, Eva, Fukaki, Hidehiro, Brady, Siobhan M, Scheres, Ben, Péret, Benjamin, Bennett, Malcolm J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3349
container_issue 18
container_start_page 3340
container_title Development (Cambridge)
container_volume 143
creator Porco, Silvana
Larrieu, Antoine
Du, Yujuan
Gaudinier, Allison
Goh, Tatsuaki
Swarup, Kamal
Swarup, Ranjan
Kuempers, Britta
Bishopp, Anthony
Lavenus, Julien
Casimiro, Ilda
Hill, Kristine
Benkova, Eva
Fukaki, Hidehiro
Brady, Siobhan M
Scheres, Ben
Péret, Benjamin
Bennett, Malcolm J
description Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence.
doi_str_mv 10.1242/dev.136283
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1819900666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819900666</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-f1a163b509036c37a3013716ed3d2493fe066da952280a099c13901982a89163</originalsourceid><addsrcrecordid>eNo1kE1LxDAQhoMg7rp68QdIjl665mO3aY7r-gkFL3vwVqbNdIm0SU1SWf-9VVcYGOblmYdhCLnibMnFStwa_FxymYtCnpA5XymVaS70jJzH-M4Yk7lSZ2Qm1FoVqpBzcighYYCOBu8TxR7DHl2D1Dq6CVBb44doI53K4IDOoEvUO5oCuNgEOyQ7TS00yQda3t0LTQPuxw5-c99SGA-Tyrq2Gw-0gRAsTuDmTV6Q0xa6iJfHviC7x4fd9jkrX59etpsyGwTnKWs58FzWa6an2xupQDIuFc_RSCNWWrbI8tyAXgtRMGBaN1xqxnUhoNDT5oLc_GmH4D9GjKnqbWyw68ChH2PFC641mxw_6PURHeseTTUE20P4qv6fJb8BNthojg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819900666</pqid></control><display><type>article</type><title>Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Porco, Silvana ; Larrieu, Antoine ; Du, Yujuan ; Gaudinier, Allison ; Goh, Tatsuaki ; Swarup, Kamal ; Swarup, Ranjan ; Kuempers, Britta ; Bishopp, Anthony ; Lavenus, Julien ; Casimiro, Ilda ; Hill, Kristine ; Benkova, Eva ; Fukaki, Hidehiro ; Brady, Siobhan M ; Scheres, Ben ; Péret, Benjamin ; Bennett, Malcolm J</creator><creatorcontrib>Porco, Silvana ; Larrieu, Antoine ; Du, Yujuan ; Gaudinier, Allison ; Goh, Tatsuaki ; Swarup, Kamal ; Swarup, Ranjan ; Kuempers, Britta ; Bishopp, Anthony ; Lavenus, Julien ; Casimiro, Ilda ; Hill, Kristine ; Benkova, Eva ; Fukaki, Hidehiro ; Brady, Siobhan M ; Scheres, Ben ; Péret, Benjamin ; Bennett, Malcolm J</creatorcontrib><description>Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence.</description><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.136283</identifier><identifier>PMID: 27578783</identifier><language>eng</language><publisher>England</publisher><subject>Arabidopsis - metabolism ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Gene Expression Regulation, Plant - genetics ; Gene Expression Regulation, Plant - physiology ; Indoleacetic Acids - metabolism ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Plant Roots - metabolism ; Plant Roots - physiology ; Signal Transduction - genetics ; Signal Transduction - physiology ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Development (Cambridge), 2016-09, Vol.143 (18), p.3340-3349</ispartof><rights>2016. Published by The Company of Biologists Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0475-390X ; 0000-0003-1336-0796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27578783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Porco, Silvana</creatorcontrib><creatorcontrib>Larrieu, Antoine</creatorcontrib><creatorcontrib>Du, Yujuan</creatorcontrib><creatorcontrib>Gaudinier, Allison</creatorcontrib><creatorcontrib>Goh, Tatsuaki</creatorcontrib><creatorcontrib>Swarup, Kamal</creatorcontrib><creatorcontrib>Swarup, Ranjan</creatorcontrib><creatorcontrib>Kuempers, Britta</creatorcontrib><creatorcontrib>Bishopp, Anthony</creatorcontrib><creatorcontrib>Lavenus, Julien</creatorcontrib><creatorcontrib>Casimiro, Ilda</creatorcontrib><creatorcontrib>Hill, Kristine</creatorcontrib><creatorcontrib>Benkova, Eva</creatorcontrib><creatorcontrib>Fukaki, Hidehiro</creatorcontrib><creatorcontrib>Brady, Siobhan M</creatorcontrib><creatorcontrib>Scheres, Ben</creatorcontrib><creatorcontrib>Péret, Benjamin</creatorcontrib><creatorcontrib>Bennett, Malcolm J</creatorcontrib><title>Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence.</description><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Plant Roots - metabolism</subject><subject>Plant Roots - physiology</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kE1LxDAQhoMg7rp68QdIjl665mO3aY7r-gkFL3vwVqbNdIm0SU1SWf-9VVcYGOblmYdhCLnibMnFStwa_FxymYtCnpA5XymVaS70jJzH-M4Yk7lSZ2Qm1FoVqpBzcighYYCOBu8TxR7DHl2D1Dq6CVBb44doI53K4IDOoEvUO5oCuNgEOyQ7TS00yQda3t0LTQPuxw5-c99SGA-Tyrq2Gw-0gRAsTuDmTV6Q0xa6iJfHviC7x4fd9jkrX59etpsyGwTnKWs58FzWa6an2xupQDIuFc_RSCNWWrbI8tyAXgtRMGBaN1xqxnUhoNDT5oLc_GmH4D9GjKnqbWyw68ChH2PFC641mxw_6PURHeseTTUE20P4qv6fJb8BNthojg</recordid><startdate>20160915</startdate><enddate>20160915</enddate><creator>Porco, Silvana</creator><creator>Larrieu, Antoine</creator><creator>Du, Yujuan</creator><creator>Gaudinier, Allison</creator><creator>Goh, Tatsuaki</creator><creator>Swarup, Kamal</creator><creator>Swarup, Ranjan</creator><creator>Kuempers, Britta</creator><creator>Bishopp, Anthony</creator><creator>Lavenus, Julien</creator><creator>Casimiro, Ilda</creator><creator>Hill, Kristine</creator><creator>Benkova, Eva</creator><creator>Fukaki, Hidehiro</creator><creator>Brady, Siobhan M</creator><creator>Scheres, Ben</creator><creator>Péret, Benjamin</creator><creator>Bennett, Malcolm J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0475-390X</orcidid><orcidid>https://orcid.org/0000-0003-1336-0796</orcidid></search><sort><creationdate>20160915</creationdate><title>Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3</title><author>Porco, Silvana ; Larrieu, Antoine ; Du, Yujuan ; Gaudinier, Allison ; Goh, Tatsuaki ; Swarup, Kamal ; Swarup, Ranjan ; Kuempers, Britta ; Bishopp, Anthony ; Lavenus, Julien ; Casimiro, Ilda ; Hill, Kristine ; Benkova, Eva ; Fukaki, Hidehiro ; Brady, Siobhan M ; Scheres, Ben ; Péret, Benjamin ; Bennett, Malcolm J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-f1a163b509036c37a3013716ed3d2493fe066da952280a099c13901982a89163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Plant Roots - metabolism</topic><topic>Plant Roots - physiology</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porco, Silvana</creatorcontrib><creatorcontrib>Larrieu, Antoine</creatorcontrib><creatorcontrib>Du, Yujuan</creatorcontrib><creatorcontrib>Gaudinier, Allison</creatorcontrib><creatorcontrib>Goh, Tatsuaki</creatorcontrib><creatorcontrib>Swarup, Kamal</creatorcontrib><creatorcontrib>Swarup, Ranjan</creatorcontrib><creatorcontrib>Kuempers, Britta</creatorcontrib><creatorcontrib>Bishopp, Anthony</creatorcontrib><creatorcontrib>Lavenus, Julien</creatorcontrib><creatorcontrib>Casimiro, Ilda</creatorcontrib><creatorcontrib>Hill, Kristine</creatorcontrib><creatorcontrib>Benkova, Eva</creatorcontrib><creatorcontrib>Fukaki, Hidehiro</creatorcontrib><creatorcontrib>Brady, Siobhan M</creatorcontrib><creatorcontrib>Scheres, Ben</creatorcontrib><creatorcontrib>Péret, Benjamin</creatorcontrib><creatorcontrib>Bennett, Malcolm J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porco, Silvana</au><au>Larrieu, Antoine</au><au>Du, Yujuan</au><au>Gaudinier, Allison</au><au>Goh, Tatsuaki</au><au>Swarup, Kamal</au><au>Swarup, Ranjan</au><au>Kuempers, Britta</au><au>Bishopp, Anthony</au><au>Lavenus, Julien</au><au>Casimiro, Ilda</au><au>Hill, Kristine</au><au>Benkova, Eva</au><au>Fukaki, Hidehiro</au><au>Brady, Siobhan M</au><au>Scheres, Ben</au><au>Péret, Benjamin</au><au>Bennett, Malcolm J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2016-09-15</date><risdate>2016</risdate><volume>143</volume><issue>18</issue><spage>3340</spage><epage>3349</epage><pages>3340-3349</pages><eissn>1477-9129</eissn><abstract>Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence.</abstract><cop>England</cop><pmid>27578783</pmid><doi>10.1242/dev.136283</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0475-390X</orcidid><orcidid>https://orcid.org/0000-0003-1336-0796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1477-9129
ispartof Development (Cambridge), 2016-09, Vol.143 (18), p.3340-3349
issn 1477-9129
language eng
recordid cdi_proquest_miscellaneous_1819900666
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists
subjects Arabidopsis - metabolism
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Gene Expression Regulation, Plant - genetics
Gene Expression Regulation, Plant - physiology
Indoleacetic Acids - metabolism
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Plant Roots - metabolism
Plant Roots - physiology
Signal Transduction - genetics
Signal Transduction - physiology
Transcription Factors - genetics
Transcription Factors - metabolism
title Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lateral%20root%20emergence%20in%20Arabidopsis%20is%20dependent%20on%20transcription%20factor%20LBD29%20regulation%20of%20auxin%20influx%20carrier%20LAX3&rft.jtitle=Development%20(Cambridge)&rft.au=Porco,%20Silvana&rft.date=2016-09-15&rft.volume=143&rft.issue=18&rft.spage=3340&rft.epage=3349&rft.pages=3340-3349&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.136283&rft_dat=%3Cproquest_pubme%3E1819900666%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819900666&rft_id=info:pmid/27578783&rfr_iscdi=true