Evaluation of pH Testing Methods for Sulfidic Mine Waste
Environmental assessment of solid mine waste is required throughout the life of a mine. This has driven the need for tools and practices to understand the current state of net acidity in mine wastes. Rinse and paste pH tests are commonly used in the initial screening of waste to provide a preliminar...
Gespeichert in:
Veröffentlicht in: | Mine water and the environment 2016-09, Vol.35 (3), p.318-331 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 331 |
---|---|
container_issue | 3 |
container_start_page | 318 |
container_title | Mine water and the environment |
container_volume | 35 |
creator | Noble, Taryn L. Lottermoser, Bernd G. Parbhakar-Fox, Anita |
description | Environmental assessment of solid mine waste is required throughout the life of a mine. This has driven the need for tools and practices to understand the current state of net acidity in mine wastes. Rinse and paste pH tests are commonly used in the initial screening of waste to provide a preliminary evaluation of its current net acidity. Such pH tests are particularly useful for assessing the chemistry of first flush waters draining sulfidic rocks and wastes. In this study, we compared nine different pH tests (rinse and paste pH tests as well as soil tests of the International Organization for Standardization ISO 10390:
2005
; American Society for Testing and Materials ASTM D4972-01
2007
; Standards Australia AS4969.2-
2008
), using three different sulfidic rock samples and the acid–base accounting standard KZK-1. We observed significant variability in measured pH for the same samples using the different test methods. We show that different rinse and paste pH methods using different grain sizes and extraction solutions can result in different risk classification for ARD assessments. We recommend carrying out pH measurements using 0.01 M CaCl
2
solution, which results in more rapid, reproducible, and precise analyses than using deionised water. |
doi_str_mv | 10.1007/s10230-015-0356-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1819147635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4155813801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-94a9601980c2a7b8b40eee5c342ed4d8c341c817d0d87e9cd121bea2d926a7363</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gxUt0JrubTY5SqhUqHqx4DOkmW7dsNzXZFXx7s9SDCJ7mh_n-YfgIuUS4QYDyNiLwDBhgwSArBONHZIICBUMQ8jhl4AVTiPyUnMW4BcBS8GJC5PzTtIPpG99RX9P9gq5c7JtuQ59c_-5tpLUP9GVo68Y2FX1qOkffTOzdOTmpTRvdxc-cktf7-Wq2YMvnh8fZ3ZJVWa56pnKjBKCSUHFTruU6B-dckZbc2dzKFLCSWFqwsnSqsshx7Qy3igtTZiKbkuvD3X3wH0P6Te-aWLm2NZ3zQ9QoUWFeiqxI6NUfdOuH0KXvRirjyUGSNCV4oKrgYwyu1vvQ7Ez40gh6dKkPLnVyqUeXeuzwQycmttu48Ovyv6Vvo8V0Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813210202</pqid></control><display><type>article</type><title>Evaluation of pH Testing Methods for Sulfidic Mine Waste</title><source>SpringerLink Journals - AutoHoldings</source><creator>Noble, Taryn L. ; Lottermoser, Bernd G. ; Parbhakar-Fox, Anita</creator><creatorcontrib>Noble, Taryn L. ; Lottermoser, Bernd G. ; Parbhakar-Fox, Anita</creatorcontrib><description>Environmental assessment of solid mine waste is required throughout the life of a mine. This has driven the need for tools and practices to understand the current state of net acidity in mine wastes. Rinse and paste pH tests are commonly used in the initial screening of waste to provide a preliminary evaluation of its current net acidity. Such pH tests are particularly useful for assessing the chemistry of first flush waters draining sulfidic rocks and wastes. In this study, we compared nine different pH tests (rinse and paste pH tests as well as soil tests of the International Organization for Standardization ISO 10390:
2005
; American Society for Testing and Materials ASTM D4972-01
2007
; Standards Australia AS4969.2-
2008
), using three different sulfidic rock samples and the acid–base accounting standard KZK-1. We observed significant variability in measured pH for the same samples using the different test methods. We show that different rinse and paste pH methods using different grain sizes and extraction solutions can result in different risk classification for ARD assessments. We recommend carrying out pH measurements using 0.01 M CaCl
2
solution, which results in more rapid, reproducible, and precise analyses than using deionised water.</description><identifier>ISSN: 1025-9112</identifier><identifier>EISSN: 1616-1068</identifier><identifier>DOI: 10.1007/s10230-015-0356-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acidity ; Calcium chloride ; Earth and Environmental Science ; Earth Sciences ; Ecotoxicology ; Environmental assessment ; Environmental Impact Assessment ; Evaluation ; Geology ; Grain size ; Hydrogeology ; Industrial Pollution Prevention ; International standards ; Materials ; Mine wastes ; Mineral Resources ; Mines ; Pasta ; pH effects ; Rocks ; Sediment samples ; Soil testing ; Solid state physics ; Standardization ; Sulfide compounds ; Technical Article ; Temperature effects ; Waste materials ; Wastes ; Water Quality/Water Pollution</subject><ispartof>Mine water and the environment, 2016-09, Vol.35 (3), p.318-331</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-94a9601980c2a7b8b40eee5c342ed4d8c341c817d0d87e9cd121bea2d926a7363</citedby><cites>FETCH-LOGICAL-c349t-94a9601980c2a7b8b40eee5c342ed4d8c341c817d0d87e9cd121bea2d926a7363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10230-015-0356-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10230-015-0356-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Noble, Taryn L.</creatorcontrib><creatorcontrib>Lottermoser, Bernd G.</creatorcontrib><creatorcontrib>Parbhakar-Fox, Anita</creatorcontrib><title>Evaluation of pH Testing Methods for Sulfidic Mine Waste</title><title>Mine water and the environment</title><addtitle>Mine Water Environ</addtitle><description>Environmental assessment of solid mine waste is required throughout the life of a mine. This has driven the need for tools and practices to understand the current state of net acidity in mine wastes. Rinse and paste pH tests are commonly used in the initial screening of waste to provide a preliminary evaluation of its current net acidity. Such pH tests are particularly useful for assessing the chemistry of first flush waters draining sulfidic rocks and wastes. In this study, we compared nine different pH tests (rinse and paste pH tests as well as soil tests of the International Organization for Standardization ISO 10390:
2005
; American Society for Testing and Materials ASTM D4972-01
2007
; Standards Australia AS4969.2-
2008
), using three different sulfidic rock samples and the acid–base accounting standard KZK-1. We observed significant variability in measured pH for the same samples using the different test methods. We show that different rinse and paste pH methods using different grain sizes and extraction solutions can result in different risk classification for ARD assessments. We recommend carrying out pH measurements using 0.01 M CaCl
2
solution, which results in more rapid, reproducible, and precise analyses than using deionised water.</description><subject>Acidity</subject><subject>Calcium chloride</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecotoxicology</subject><subject>Environmental assessment</subject><subject>Environmental Impact Assessment</subject><subject>Evaluation</subject><subject>Geology</subject><subject>Grain size</subject><subject>Hydrogeology</subject><subject>Industrial Pollution Prevention</subject><subject>International standards</subject><subject>Materials</subject><subject>Mine wastes</subject><subject>Mineral Resources</subject><subject>Mines</subject><subject>Pasta</subject><subject>pH effects</subject><subject>Rocks</subject><subject>Sediment samples</subject><subject>Soil testing</subject><subject>Solid state physics</subject><subject>Standardization</subject><subject>Sulfide compounds</subject><subject>Technical Article</subject><subject>Temperature effects</subject><subject>Waste materials</subject><subject>Wastes</subject><subject>Water Quality/Water Pollution</subject><issn>1025-9112</issn><issn>1616-1068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gxUt0JrubTY5SqhUqHqx4DOkmW7dsNzXZFXx7s9SDCJ7mh_n-YfgIuUS4QYDyNiLwDBhgwSArBONHZIICBUMQ8jhl4AVTiPyUnMW4BcBS8GJC5PzTtIPpG99RX9P9gq5c7JtuQ59c_-5tpLUP9GVo68Y2FX1qOkffTOzdOTmpTRvdxc-cktf7-Wq2YMvnh8fZ3ZJVWa56pnKjBKCSUHFTruU6B-dckZbc2dzKFLCSWFqwsnSqsshx7Qy3igtTZiKbkuvD3X3wH0P6Te-aWLm2NZ3zQ9QoUWFeiqxI6NUfdOuH0KXvRirjyUGSNCV4oKrgYwyu1vvQ7Ez40gh6dKkPLnVyqUeXeuzwQycmttu48Ovyv6Vvo8V0Dg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Noble, Taryn L.</creator><creator>Lottermoser, Bernd G.</creator><creator>Parbhakar-Fox, Anita</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8C1</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20160901</creationdate><title>Evaluation of pH Testing Methods for Sulfidic Mine Waste</title><author>Noble, Taryn L. ; Lottermoser, Bernd G. ; Parbhakar-Fox, Anita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-94a9601980c2a7b8b40eee5c342ed4d8c341c817d0d87e9cd121bea2d926a7363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acidity</topic><topic>Calcium chloride</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecotoxicology</topic><topic>Environmental assessment</topic><topic>Environmental Impact Assessment</topic><topic>Evaluation</topic><topic>Geology</topic><topic>Grain size</topic><topic>Hydrogeology</topic><topic>Industrial Pollution Prevention</topic><topic>International standards</topic><topic>Materials</topic><topic>Mine wastes</topic><topic>Mineral Resources</topic><topic>Mines</topic><topic>Pasta</topic><topic>pH effects</topic><topic>Rocks</topic><topic>Sediment samples</topic><topic>Soil testing</topic><topic>Solid state physics</topic><topic>Standardization</topic><topic>Sulfide compounds</topic><topic>Technical Article</topic><topic>Temperature effects</topic><topic>Waste materials</topic><topic>Wastes</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noble, Taryn L.</creatorcontrib><creatorcontrib>Lottermoser, Bernd G.</creatorcontrib><creatorcontrib>Parbhakar-Fox, Anita</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Mine water and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noble, Taryn L.</au><au>Lottermoser, Bernd G.</au><au>Parbhakar-Fox, Anita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of pH Testing Methods for Sulfidic Mine Waste</atitle><jtitle>Mine water and the environment</jtitle><stitle>Mine Water Environ</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>35</volume><issue>3</issue><spage>318</spage><epage>331</epage><pages>318-331</pages><issn>1025-9112</issn><eissn>1616-1068</eissn><abstract>Environmental assessment of solid mine waste is required throughout the life of a mine. This has driven the need for tools and practices to understand the current state of net acidity in mine wastes. Rinse and paste pH tests are commonly used in the initial screening of waste to provide a preliminary evaluation of its current net acidity. Such pH tests are particularly useful for assessing the chemistry of first flush waters draining sulfidic rocks and wastes. In this study, we compared nine different pH tests (rinse and paste pH tests as well as soil tests of the International Organization for Standardization ISO 10390:
2005
; American Society for Testing and Materials ASTM D4972-01
2007
; Standards Australia AS4969.2-
2008
), using three different sulfidic rock samples and the acid–base accounting standard KZK-1. We observed significant variability in measured pH for the same samples using the different test methods. We show that different rinse and paste pH methods using different grain sizes and extraction solutions can result in different risk classification for ARD assessments. We recommend carrying out pH measurements using 0.01 M CaCl
2
solution, which results in more rapid, reproducible, and precise analyses than using deionised water.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10230-015-0356-2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1025-9112 |
ispartof | Mine water and the environment, 2016-09, Vol.35 (3), p.318-331 |
issn | 1025-9112 1616-1068 |
language | eng |
recordid | cdi_proquest_miscellaneous_1819147635 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acidity Calcium chloride Earth and Environmental Science Earth Sciences Ecotoxicology Environmental assessment Environmental Impact Assessment Evaluation Geology Grain size Hydrogeology Industrial Pollution Prevention International standards Materials Mine wastes Mineral Resources Mines Pasta pH effects Rocks Sediment samples Soil testing Solid state physics Standardization Sulfide compounds Technical Article Temperature effects Waste materials Wastes Water Quality/Water Pollution |
title | Evaluation of pH Testing Methods for Sulfidic Mine Waste |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20pH%20Testing%20Methods%20for%20Sulfidic%20Mine%20Waste&rft.jtitle=Mine%20water%20and%20the%20environment&rft.au=Noble,%20Taryn%20L.&rft.date=2016-09-01&rft.volume=35&rft.issue=3&rft.spage=318&rft.epage=331&rft.pages=318-331&rft.issn=1025-9112&rft.eissn=1616-1068&rft_id=info:doi/10.1007/s10230-015-0356-2&rft_dat=%3Cproquest_cross%3E4155813801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813210202&rft_id=info:pmid/&rfr_iscdi=true |