Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae
MYB transcription factors play an important role in regulating key plant developmental processes involving defense, cell shape, pigmentation, and root formation. Within this gene family, sequences containing an R2R3 MYB domain are the most abundant type and exhibit a wide diversity of functions. In...
Gespeichert in:
Veröffentlicht in: | Journal of molecular evolution 2016-08, Vol.83 (1-2), p.26-37 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 1-2 |
container_start_page | 26 |
container_title | Journal of molecular evolution |
container_volume | 83 |
creator | Gates, Daniel J. Strickler, Susan R. Mueller, Lukas A. Olson, Bradley J. S. C. Smith, Stacey D. |
description | MYB transcription factors play an important role in regulating key plant developmental processes involving defense, cell shape, pigmentation, and root formation. Within this gene family, sequences containing an R2R3 MYB domain are the most abundant type and exhibit a wide diversity of functions. In this study, we identify 559 R2R3 MYB genes using whole genome data from four species of Solanaceae and reconstruct their evolutionary relationships. We compare the Solanaceae R2R3 MYBs to the well-characterized
Arabidopsis thaliana
sequences to estimate functional diversity and to identify gains and losses of MYB clades in the Solanaceae. We identify numerous R2R3 MYBs that do not appear closely related to
Arabidopsis
MYBs, and thus may represent clades of genes that have been lost along the
Arabidopsis
lineage or gained after the divergence of Rosid and Asterid lineages. Despite differences in the distribution of R2R3 MYBs across functional subgroups and species, the overall size of the R2R3 subfamily has changed relatively little over the roughly 50 million-year history of Solanaceae. We added our information regarding R2R3 MYBs in Solanaceae to other data and performed a meta-analysis to trace the evolution of subfamily size across land plants. The results reveal many shifts in the number of R2R3 genes, including a 54 % increase along the angiosperm stem lineage. The variation in R2R3 subfamily size across land plants is weakly positively correlated with genome size and strongly positively correlated with total number of genes. The retention of such a large number of R2R3 copies over long evolutionary time periods suggests that they have acquired new functions and been maintained by selection. Discovering the nature of this functional diversity will require integrating forward and reverse genetic approaches on an -omics scale. |
doi_str_mv | 10.1007/s00239-016-9750-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1819140791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1814682285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-bbd1813520177c0f3a018a3067e570272817e1c65ccb9c9b9ea79943eb61bb173</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMozvj4AW6k4MZN9ObRplnq-IQRUceFq5DGVCPTZkxaQX-9GUdFBMFNLuR899x7OQhtEdgjAGI_AlAmMZACS5EDfltCQ8IZxfNnGQ2TTDEtOR-gtRifAIjIJVtFAypYwbkshujqyL3YEF3tjO6cbzNfZ9f0muGLu8NsEnQbTXCzD-VEm86HmLk26x5tNvGN7nz6bdz0NbvxU91qY7XdQCu1nka7-VnX0e3J8WR0hseXp-ejgzE2HPIOV9U9KQnLaVpKGKiZBlJqBoWwuQAqaEmEJabIjamkkZW0WkjJma0KUlVEsHW0u_CdBf_c29ipxkVjp2kP6_uokrskHIQk_0F5UVJa5gnd-YU--T606ZAPCorEQaLIgjLBxxhsrWbBNTq8KgJqHo1aRKNSNGoejXpLPdufzn3V2Pvvjq8sEkAXQExS-2DDj9F_ur4DZSSW3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814066820</pqid></control><display><type>article</type><title>Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gates, Daniel J. ; Strickler, Susan R. ; Mueller, Lukas A. ; Olson, Bradley J. S. C. ; Smith, Stacey D.</creator><creatorcontrib>Gates, Daniel J. ; Strickler, Susan R. ; Mueller, Lukas A. ; Olson, Bradley J. S. C. ; Smith, Stacey D.</creatorcontrib><description>MYB transcription factors play an important role in regulating key plant developmental processes involving defense, cell shape, pigmentation, and root formation. Within this gene family, sequences containing an R2R3 MYB domain are the most abundant type and exhibit a wide diversity of functions. In this study, we identify 559 R2R3 MYB genes using whole genome data from four species of Solanaceae and reconstruct their evolutionary relationships. We compare the Solanaceae R2R3 MYBs to the well-characterized
Arabidopsis thaliana
sequences to estimate functional diversity and to identify gains and losses of MYB clades in the Solanaceae. We identify numerous R2R3 MYBs that do not appear closely related to
Arabidopsis
MYBs, and thus may represent clades of genes that have been lost along the
Arabidopsis
lineage or gained after the divergence of Rosid and Asterid lineages. Despite differences in the distribution of R2R3 MYBs across functional subgroups and species, the overall size of the R2R3 subfamily has changed relatively little over the roughly 50 million-year history of Solanaceae. We added our information regarding R2R3 MYBs in Solanaceae to other data and performed a meta-analysis to trace the evolution of subfamily size across land plants. The results reveal many shifts in the number of R2R3 genes, including a 54 % increase along the angiosperm stem lineage. The variation in R2R3 subfamily size across land plants is weakly positively correlated with genome size and strongly positively correlated with total number of genes. The retention of such a large number of R2R3 copies over long evolutionary time periods suggests that they have acquired new functions and been maintained by selection. Discovering the nature of this functional diversity will require integrating forward and reverse genetic approaches on an -omics scale.</description><identifier>ISSN: 0022-2844</identifier><identifier>EISSN: 1432-1432</identifier><identifier>DOI: 10.1007/s00239-016-9750-z</identifier><identifier>PMID: 27364496</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animal Genetics and Genomics ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis thaliana ; Biodiversity ; Biomedical and Life Sciences ; Cell Biology ; Conserved Sequence ; Evolution, Molecular ; Evolutionary Biology ; Flowers & plants ; Gene Expression Profiling - methods ; Gene Expression Regulation, Plant ; Genes, Plant ; Life Sciences ; Lycopersicon esculentum ; Lycopersicon esculentum - genetics ; Microbiology ; Molecular biology ; Multigene Family ; Original Article ; Phylogeny ; Pigmentation ; Plant Genetics and Genomics ; Plant Proteins - genetics ; Plant Sciences ; Solanaceae ; Tomatoes ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Journal of molecular evolution, 2016-08, Vol.83 (1-2), p.26-37</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-bbd1813520177c0f3a018a3067e570272817e1c65ccb9c9b9ea79943eb61bb173</citedby><cites>FETCH-LOGICAL-c405t-bbd1813520177c0f3a018a3067e570272817e1c65ccb9c9b9ea79943eb61bb173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00239-016-9750-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00239-016-9750-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27364496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gates, Daniel J.</creatorcontrib><creatorcontrib>Strickler, Susan R.</creatorcontrib><creatorcontrib>Mueller, Lukas A.</creatorcontrib><creatorcontrib>Olson, Bradley J. S. C.</creatorcontrib><creatorcontrib>Smith, Stacey D.</creatorcontrib><title>Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae</title><title>Journal of molecular evolution</title><addtitle>J Mol Evol</addtitle><addtitle>J Mol Evol</addtitle><description>MYB transcription factors play an important role in regulating key plant developmental processes involving defense, cell shape, pigmentation, and root formation. Within this gene family, sequences containing an R2R3 MYB domain are the most abundant type and exhibit a wide diversity of functions. In this study, we identify 559 R2R3 MYB genes using whole genome data from four species of Solanaceae and reconstruct their evolutionary relationships. We compare the Solanaceae R2R3 MYBs to the well-characterized
Arabidopsis thaliana
sequences to estimate functional diversity and to identify gains and losses of MYB clades in the Solanaceae. We identify numerous R2R3 MYBs that do not appear closely related to
Arabidopsis
MYBs, and thus may represent clades of genes that have been lost along the
Arabidopsis
lineage or gained after the divergence of Rosid and Asterid lineages. Despite differences in the distribution of R2R3 MYBs across functional subgroups and species, the overall size of the R2R3 subfamily has changed relatively little over the roughly 50 million-year history of Solanaceae. We added our information regarding R2R3 MYBs in Solanaceae to other data and performed a meta-analysis to trace the evolution of subfamily size across land plants. The results reveal many shifts in the number of R2R3 genes, including a 54 % increase along the angiosperm stem lineage. The variation in R2R3 subfamily size across land plants is weakly positively correlated with genome size and strongly positively correlated with total number of genes. The retention of such a large number of R2R3 copies over long evolutionary time periods suggests that they have acquired new functions and been maintained by selection. Discovering the nature of this functional diversity will require integrating forward and reverse genetic approaches on an -omics scale.</description><subject>Animal Genetics and Genomics</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Conserved Sequence</subject><subject>Evolution, Molecular</subject><subject>Evolutionary Biology</subject><subject>Flowers & plants</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Life Sciences</subject><subject>Lycopersicon esculentum</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Microbiology</subject><subject>Molecular biology</subject><subject>Multigene Family</subject><subject>Original Article</subject><subject>Phylogeny</subject><subject>Pigmentation</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Proteins - genetics</subject><subject>Plant Sciences</subject><subject>Solanaceae</subject><subject>Tomatoes</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0022-2844</issn><issn>1432-1432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUtLxDAUhYMozvj4AW6k4MZN9ObRplnq-IQRUceFq5DGVCPTZkxaQX-9GUdFBMFNLuR899x7OQhtEdgjAGI_AlAmMZACS5EDfltCQ8IZxfNnGQ2TTDEtOR-gtRifAIjIJVtFAypYwbkshujqyL3YEF3tjO6cbzNfZ9f0muGLu8NsEnQbTXCzD-VEm86HmLk26x5tNvGN7nz6bdz0NbvxU91qY7XdQCu1nka7-VnX0e3J8WR0hseXp-ejgzE2HPIOV9U9KQnLaVpKGKiZBlJqBoWwuQAqaEmEJabIjamkkZW0WkjJma0KUlVEsHW0u_CdBf_c29ipxkVjp2kP6_uokrskHIQk_0F5UVJa5gnd-YU--T606ZAPCorEQaLIgjLBxxhsrWbBNTq8KgJqHo1aRKNSNGoejXpLPdufzn3V2Pvvjq8sEkAXQExS-2DDj9F_ur4DZSSW3Q</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Gates, Daniel J.</creator><creator>Strickler, Susan R.</creator><creator>Mueller, Lukas A.</creator><creator>Olson, Bradley J. S. C.</creator><creator>Smith, Stacey D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20160801</creationdate><title>Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae</title><author>Gates, Daniel J. ; Strickler, Susan R. ; Mueller, Lukas A. ; Olson, Bradley J. S. C. ; Smith, Stacey D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-bbd1813520177c0f3a018a3067e570272817e1c65ccb9c9b9ea79943eb61bb173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animal Genetics and Genomics</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Conserved Sequence</topic><topic>Evolution, Molecular</topic><topic>Evolutionary Biology</topic><topic>Flowers & plants</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Life Sciences</topic><topic>Lycopersicon esculentum</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Microbiology</topic><topic>Molecular biology</topic><topic>Multigene Family</topic><topic>Original Article</topic><topic>Phylogeny</topic><topic>Pigmentation</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Proteins - genetics</topic><topic>Plant Sciences</topic><topic>Solanaceae</topic><topic>Tomatoes</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gates, Daniel J.</creatorcontrib><creatorcontrib>Strickler, Susan R.</creatorcontrib><creatorcontrib>Mueller, Lukas A.</creatorcontrib><creatorcontrib>Olson, Bradley J. S. C.</creatorcontrib><creatorcontrib>Smith, Stacey D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gates, Daniel J.</au><au>Strickler, Susan R.</au><au>Mueller, Lukas A.</au><au>Olson, Bradley J. S. C.</au><au>Smith, Stacey D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae</atitle><jtitle>Journal of molecular evolution</jtitle><stitle>J Mol Evol</stitle><addtitle>J Mol Evol</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>83</volume><issue>1-2</issue><spage>26</spage><epage>37</epage><pages>26-37</pages><issn>0022-2844</issn><eissn>1432-1432</eissn><abstract>MYB transcription factors play an important role in regulating key plant developmental processes involving defense, cell shape, pigmentation, and root formation. Within this gene family, sequences containing an R2R3 MYB domain are the most abundant type and exhibit a wide diversity of functions. In this study, we identify 559 R2R3 MYB genes using whole genome data from four species of Solanaceae and reconstruct their evolutionary relationships. We compare the Solanaceae R2R3 MYBs to the well-characterized
Arabidopsis thaliana
sequences to estimate functional diversity and to identify gains and losses of MYB clades in the Solanaceae. We identify numerous R2R3 MYBs that do not appear closely related to
Arabidopsis
MYBs, and thus may represent clades of genes that have been lost along the
Arabidopsis
lineage or gained after the divergence of Rosid and Asterid lineages. Despite differences in the distribution of R2R3 MYBs across functional subgroups and species, the overall size of the R2R3 subfamily has changed relatively little over the roughly 50 million-year history of Solanaceae. We added our information regarding R2R3 MYBs in Solanaceae to other data and performed a meta-analysis to trace the evolution of subfamily size across land plants. The results reveal many shifts in the number of R2R3 genes, including a 54 % increase along the angiosperm stem lineage. The variation in R2R3 subfamily size across land plants is weakly positively correlated with genome size and strongly positively correlated with total number of genes. The retention of such a large number of R2R3 copies over long evolutionary time periods suggests that they have acquired new functions and been maintained by selection. Discovering the nature of this functional diversity will require integrating forward and reverse genetic approaches on an -omics scale.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27364496</pmid><doi>10.1007/s00239-016-9750-z</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2844 |
ispartof | Journal of molecular evolution, 2016-08, Vol.83 (1-2), p.26-37 |
issn | 0022-2844 1432-1432 |
language | eng |
recordid | cdi_proquest_miscellaneous_1819140791 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animal Genetics and Genomics Arabidopsis Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis thaliana Biodiversity Biomedical and Life Sciences Cell Biology Conserved Sequence Evolution, Molecular Evolutionary Biology Flowers & plants Gene Expression Profiling - methods Gene Expression Regulation, Plant Genes, Plant Life Sciences Lycopersicon esculentum Lycopersicon esculentum - genetics Microbiology Molecular biology Multigene Family Original Article Phylogeny Pigmentation Plant Genetics and Genomics Plant Proteins - genetics Plant Sciences Solanaceae Tomatoes Transcription Factors - genetics Transcription Factors - metabolism |
title | Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversification%20of%20R2R3-MYB%20Transcription%20Factors%20in%20the%20Tomato%20Family%20Solanaceae&rft.jtitle=Journal%20of%20molecular%20evolution&rft.au=Gates,%20Daniel%20J.&rft.date=2016-08-01&rft.volume=83&rft.issue=1-2&rft.spage=26&rft.epage=37&rft.pages=26-37&rft.issn=0022-2844&rft.eissn=1432-1432&rft_id=info:doi/10.1007/s00239-016-9750-z&rft_dat=%3Cproquest_cross%3E1814682285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814066820&rft_id=info:pmid/27364496&rfr_iscdi=true |