Non-Traditional Interpretation of Conventional EEG Curve Analyses

The electroencephalographic (EEG) curve is a highly complex formation representing cerebral system activities. On the one hand it may resemble featureless oscillations in alpha activity, on the other hand it looks like a very irregular tangle of mostly quite random lines even when the proband or pat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Activitas nervosa superior (2007) 2016, Vol.58 (1-2), p.28-44
Hauptverfasser: Faber, Josef, Novak, Mirko, Votruba, Zdenek, Kovaljov, Michal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 1-2
container_start_page 28
container_title Activitas nervosa superior (2007)
container_volume 58
creator Faber, Josef
Novak, Mirko
Votruba, Zdenek
Kovaljov, Michal
description The electroencephalographic (EEG) curve is a highly complex formation representing cerebral system activities. On the one hand it may resemble featureless oscillations in alpha activity, on the other hand it looks like a very irregular tangle of mostly quite random lines even when the proband or patient is in a waking state. Recent findings also indicate that the EEG signal can be studied as a complex numerical series using signal analysis in terms of chaodynamic processes and describe its outcome as fractals or attractors. Using spectral Gabor analysis (GA), local coherence (LCA) and amplitude analyses (AA) we report results with regard to clinical experience and atractor character of epileptic activity. We have developed a simple coefficient method showing the state of EEG synchronisation and, at the same time, also the actual state of integration or complexity of the systems in the brain. Amplitude analysis shows the fractal feature of alpha activity and attractor descriptions related to of epileptic activity. These results might be useful for detection of mental states related to levels of wakefulness or somnolence.
doi_str_mv 10.1007/BF03379950
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1819138213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819138213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3080-5f05cb4e179f2286561f0a8d8f962aa5f05409b5cb133cf5815940718f3102f33</originalsourceid><addsrcrecordid>eNpl0FFLwzAQAOAgCo65F39BwRdRqndJ0yaPs2xzMPRlPpesS6Sja2bSDvbvl7qBovdwR3Ifx3GE3CI8IUD2_DIFxjIpOVyQAQqgsUyluCQDyhFimglxTUbebyBEAiAEDMj4zTbx0ql11Va2UXU0b1rtdk63qv-IrIly2-x1c25PJrMo79xeR-PwPHjtb8iVUbXXo3Mdko_pZJm_xov32TwfL-KSgYCYG-DlKtGYSUOpSHmKBpRYCyNTqlTfTkCugkHGSsMFcplAhsIwBGoYG5L709yds1-d9m2xrXyp61o12na-QIESmaDY07s_dGM7F_b9VgnjFEIekoeTKp313mlT7Fy1Ve5QIBT9QYufgwb8eMI-oOZTu18j_-sj2J9yJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814352014</pqid></control><display><type>article</type><title>Non-Traditional Interpretation of Conventional EEG Curve Analyses</title><source>Springer Nature - Complete Springer Journals</source><creator>Faber, Josef ; Novak, Mirko ; Votruba, Zdenek ; Kovaljov, Michal</creator><creatorcontrib>Faber, Josef ; Novak, Mirko ; Votruba, Zdenek ; Kovaljov, Michal</creatorcontrib><description>The electroencephalographic (EEG) curve is a highly complex formation representing cerebral system activities. On the one hand it may resemble featureless oscillations in alpha activity, on the other hand it looks like a very irregular tangle of mostly quite random lines even when the proband or patient is in a waking state. Recent findings also indicate that the EEG signal can be studied as a complex numerical series using signal analysis in terms of chaodynamic processes and describe its outcome as fractals or attractors. Using spectral Gabor analysis (GA), local coherence (LCA) and amplitude analyses (AA) we report results with regard to clinical experience and atractor character of epileptic activity. We have developed a simple coefficient method showing the state of EEG synchronisation and, at the same time, also the actual state of integration or complexity of the systems in the brain. Amplitude analysis shows the fractal feature of alpha activity and attractor descriptions related to of epileptic activity. These results might be useful for detection of mental states related to levels of wakefulness or somnolence.</description><identifier>ISSN: 2510-2788</identifier><identifier>ISSN: 1802-9698</identifier><identifier>EISSN: 1802-9698</identifier><identifier>DOI: 10.1007/BF03379950</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Behavioral Science and Psychology ; Cognitive Psychology ; Communication ; Electroencephalography ; Experimental Psychology ; Ideas &amp; Opinion ; Neuropsychology ; Psychology ; Psychology Research ; Rodents ; Spinal cord</subject><ispartof>Activitas nervosa superior (2007), 2016, Vol.58 (1-2), p.28-44</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Neuroscientia o.s. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3080-5f05cb4e179f2286561f0a8d8f962aa5f05409b5cb133cf5815940718f3102f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BF03379950$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BF03379950$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Faber, Josef</creatorcontrib><creatorcontrib>Novak, Mirko</creatorcontrib><creatorcontrib>Votruba, Zdenek</creatorcontrib><creatorcontrib>Kovaljov, Michal</creatorcontrib><title>Non-Traditional Interpretation of Conventional EEG Curve Analyses</title><title>Activitas nervosa superior (2007)</title><addtitle>Act Nerv Super</addtitle><description>The electroencephalographic (EEG) curve is a highly complex formation representing cerebral system activities. On the one hand it may resemble featureless oscillations in alpha activity, on the other hand it looks like a very irregular tangle of mostly quite random lines even when the proband or patient is in a waking state. Recent findings also indicate that the EEG signal can be studied as a complex numerical series using signal analysis in terms of chaodynamic processes and describe its outcome as fractals or attractors. Using spectral Gabor analysis (GA), local coherence (LCA) and amplitude analyses (AA) we report results with regard to clinical experience and atractor character of epileptic activity. We have developed a simple coefficient method showing the state of EEG synchronisation and, at the same time, also the actual state of integration or complexity of the systems in the brain. Amplitude analysis shows the fractal feature of alpha activity and attractor descriptions related to of epileptic activity. These results might be useful for detection of mental states related to levels of wakefulness or somnolence.</description><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Communication</subject><subject>Electroencephalography</subject><subject>Experimental Psychology</subject><subject>Ideas &amp; Opinion</subject><subject>Neuropsychology</subject><subject>Psychology</subject><subject>Psychology Research</subject><subject>Rodents</subject><subject>Spinal cord</subject><issn>2510-2788</issn><issn>1802-9698</issn><issn>1802-9698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0FFLwzAQAOAgCo65F39BwRdRqndJ0yaPs2xzMPRlPpesS6Sja2bSDvbvl7qBovdwR3Ifx3GE3CI8IUD2_DIFxjIpOVyQAQqgsUyluCQDyhFimglxTUbebyBEAiAEDMj4zTbx0ql11Va2UXU0b1rtdk63qv-IrIly2-x1c25PJrMo79xeR-PwPHjtb8iVUbXXo3Mdko_pZJm_xov32TwfL-KSgYCYG-DlKtGYSUOpSHmKBpRYCyNTqlTfTkCugkHGSsMFcplAhsIwBGoYG5L709yds1-d9m2xrXyp61o12na-QIESmaDY07s_dGM7F_b9VgnjFEIekoeTKp313mlT7Fy1Ve5QIBT9QYufgwb8eMI-oOZTu18j_-sj2J9yJg</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Faber, Josef</creator><creator>Novak, Mirko</creator><creator>Votruba, Zdenek</creator><creator>Kovaljov, Michal</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>2016</creationdate><title>Non-Traditional Interpretation of Conventional EEG Curve Analyses</title><author>Faber, Josef ; Novak, Mirko ; Votruba, Zdenek ; Kovaljov, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3080-5f05cb4e179f2286561f0a8d8f962aa5f05409b5cb133cf5815940718f3102f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Communication</topic><topic>Electroencephalography</topic><topic>Experimental Psychology</topic><topic>Ideas &amp; Opinion</topic><topic>Neuropsychology</topic><topic>Psychology</topic><topic>Psychology Research</topic><topic>Rodents</topic><topic>Spinal cord</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faber, Josef</creatorcontrib><creatorcontrib>Novak, Mirko</creatorcontrib><creatorcontrib>Votruba, Zdenek</creatorcontrib><creatorcontrib>Kovaljov, Michal</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Activitas nervosa superior (2007)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faber, Josef</au><au>Novak, Mirko</au><au>Votruba, Zdenek</au><au>Kovaljov, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Traditional Interpretation of Conventional EEG Curve Analyses</atitle><jtitle>Activitas nervosa superior (2007)</jtitle><stitle>Act Nerv Super</stitle><date>2016</date><risdate>2016</risdate><volume>58</volume><issue>1-2</issue><spage>28</spage><epage>44</epage><pages>28-44</pages><issn>2510-2788</issn><issn>1802-9698</issn><eissn>1802-9698</eissn><abstract>The electroencephalographic (EEG) curve is a highly complex formation representing cerebral system activities. On the one hand it may resemble featureless oscillations in alpha activity, on the other hand it looks like a very irregular tangle of mostly quite random lines even when the proband or patient is in a waking state. Recent findings also indicate that the EEG signal can be studied as a complex numerical series using signal analysis in terms of chaodynamic processes and describe its outcome as fractals or attractors. Using spectral Gabor analysis (GA), local coherence (LCA) and amplitude analyses (AA) we report results with regard to clinical experience and atractor character of epileptic activity. We have developed a simple coefficient method showing the state of EEG synchronisation and, at the same time, also the actual state of integration or complexity of the systems in the brain. Amplitude analysis shows the fractal feature of alpha activity and attractor descriptions related to of epileptic activity. These results might be useful for detection of mental states related to levels of wakefulness or somnolence.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/BF03379950</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2510-2788
ispartof Activitas nervosa superior (2007), 2016, Vol.58 (1-2), p.28-44
issn 2510-2788
1802-9698
1802-9698
language eng
recordid cdi_proquest_miscellaneous_1819138213
source Springer Nature - Complete Springer Journals
subjects Behavioral Science and Psychology
Cognitive Psychology
Communication
Electroencephalography
Experimental Psychology
Ideas & Opinion
Neuropsychology
Psychology
Psychology Research
Rodents
Spinal cord
title Non-Traditional Interpretation of Conventional EEG Curve Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Traditional%20Interpretation%20of%20Conventional%20EEG%20Curve%20Analyses&rft.jtitle=Activitas%20nervosa%20superior%20(2007)&rft.au=Faber,%20Josef&rft.date=2016&rft.volume=58&rft.issue=1-2&rft.spage=28&rft.epage=44&rft.pages=28-44&rft.issn=2510-2788&rft.eissn=1802-9698&rft_id=info:doi/10.1007/BF03379950&rft_dat=%3Cproquest_cross%3E1819138213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814352014&rft_id=info:pmid/&rfr_iscdi=true