Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells
Facile fabrication of novel three‐dimensional anode materials to increase the bacterial loading capacity and improve substrate transport in microbial fuel cells (MFCs) is of great interest and importance. Herein, a novel graphene‐containing foam (GCF) was fabricated easily by freeze‐drying and pyrol...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2015-07, Vol.21 (30), p.10634-10638 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10638 |
---|---|
container_issue | 30 |
container_start_page | 10634 |
container_title | Chemistry : a European journal |
container_volume | 21 |
creator | Yang, Lu Wang, Shuqin Peng, Shuqin Jiang, Hongmei Zhang, Youming Deng, Wenfang Tan, Yueming Ma, Ming Xie, Qingji |
description | Facile fabrication of novel three‐dimensional anode materials to increase the bacterial loading capacity and improve substrate transport in microbial fuel cells (MFCs) is of great interest and importance. Herein, a novel graphene‐containing foam (GCF) was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. Owing to the involvement of graphene and stainless‐steel mesh in the GCF, the GCF shows high electrical conductivity, enabling the GCF to be a conductive electrode for MFC applications. With the aid of agarose, the GCF electrode possesses a supermacroporous structure with pore sizes ranging from 100–200 μm and a high surface area, which greatly increase the bacterial loading capacity. Cell viability measurements indicate that the GCF possesses excellent biocompatibility. The MFC, equipped with a 0.4 mm‐thick GCF anode, shows a maximum area power density of 786 mW m−2, which is 4.1 times that of a MFC equipped with a commercial carbon cloth anode. The simple fabrication route in combination with the outstanding electrochemical performance of the GCF indicates a promising anode for MFC applications.
Foaming up: A novel three‐dimensional supermacroporous graphene‐containing foam (GCF) anode was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. The anode outperformed carbon cloth (CC) in microbial fuel cells by 4.1 times with regard to the maximum area power density. |
doi_str_mv | 10.1002/chem.201501772 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1819137036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786207187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7202-c0ade81cc1f5a1209084823c2fcd9e033113f9a2d99dfa5255e4753c4be597873</originalsourceid><addsrcrecordid>eNqNkc9v0zAYhi0EYmVw5YgsceGS8tmO7fg4oqWd6AYHft0s13FWjyTu7Eaw_36uOirEZZwsS8_72N_3IvSawJwA0Pd244Y5BcKBSEmfoBnhlBRMCv4UzUCVshCcqRP0IqUbAFCCsefohApQXJTVDNnGWN873Jh19NbsfBhx6PAimu3Gja6ow7gzfvTjNW6CGbBJ2OClv94Un13sQhzMaB0-G0PrcL7iS29jWHvT42ZyPa5d36eX6Fln-uRePZyn6Gtz_qVeFqtPi4v6bFVYSYEWFkzrKmIt6bghFBRUZUWZpZ1tlQPGCGGdMrRVqu0Mp5y7UnJmy7XjSlaSnaJ3B-82htvJpZ0efLL5B2Z0YUqaVEQRJoGJx1FZCQqS_I9VKElJXijL6Nt_0JswxTHPvKcEgGCwf3t-oPKmUoqu09voBxPvNAG9L1XvS9XHUnPgzYN2Wg-uPeJ_WsyAOgC_cpV3j-h0vTy__FteHLI-7dzvY9bEn1pIJrn-frXQP74R8uHq40qX7B6lXboF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696006306</pqid></control><display><type>article</type><title>Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Lu ; Wang, Shuqin ; Peng, Shuqin ; Jiang, Hongmei ; Zhang, Youming ; Deng, Wenfang ; Tan, Yueming ; Ma, Ming ; Xie, Qingji</creator><creatorcontrib>Yang, Lu ; Wang, Shuqin ; Peng, Shuqin ; Jiang, Hongmei ; Zhang, Youming ; Deng, Wenfang ; Tan, Yueming ; Ma, Ming ; Xie, Qingji</creatorcontrib><description>Facile fabrication of novel three‐dimensional anode materials to increase the bacterial loading capacity and improve substrate transport in microbial fuel cells (MFCs) is of great interest and importance. Herein, a novel graphene‐containing foam (GCF) was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. Owing to the involvement of graphene and stainless‐steel mesh in the GCF, the GCF shows high electrical conductivity, enabling the GCF to be a conductive electrode for MFC applications. With the aid of agarose, the GCF electrode possesses a supermacroporous structure with pore sizes ranging from 100–200 μm and a high surface area, which greatly increase the bacterial loading capacity. Cell viability measurements indicate that the GCF possesses excellent biocompatibility. The MFC, equipped with a 0.4 mm‐thick GCF anode, shows a maximum area power density of 786 mW m−2, which is 4.1 times that of a MFC equipped with a commercial carbon cloth anode. The simple fabrication route in combination with the outstanding electrochemical performance of the GCF indicates a promising anode for MFC applications.
Foaming up: A novel three‐dimensional supermacroporous graphene‐containing foam (GCF) anode was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. The anode outperformed carbon cloth (CC) in microbial fuel cells by 4.1 times with regard to the maximum area power density.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201501772</identifier><identifier>PMID: 26095648</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>agarose ; Anodes ; Bacteria ; Biochemical fuel cells ; Bioelectric Energy Sources - microbiology ; Chemistry ; Density ; Electric Conductivity ; Electrodes ; Foams ; Graphene ; Graphite - chemistry ; microbial fuel cells ; Microorganisms ; Oxides - chemistry ; Porosity ; Sepharose - chemistry ; Shewanella putrefaciens - cytology ; Shewanella putrefaciens - growth & development ; Three dimensional</subject><ispartof>Chemistry : a European journal, 2015-07, Vol.21 (30), p.10634-10638</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7202-c0ade81cc1f5a1209084823c2fcd9e033113f9a2d99dfa5255e4753c4be597873</citedby><cites>FETCH-LOGICAL-c7202-c0ade81cc1f5a1209084823c2fcd9e033113f9a2d99dfa5255e4753c4be597873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201501772$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201501772$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26095648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Wang, Shuqin</creatorcontrib><creatorcontrib>Peng, Shuqin</creatorcontrib><creatorcontrib>Jiang, Hongmei</creatorcontrib><creatorcontrib>Zhang, Youming</creatorcontrib><creatorcontrib>Deng, Wenfang</creatorcontrib><creatorcontrib>Tan, Yueming</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Xie, Qingji</creatorcontrib><title>Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>Facile fabrication of novel three‐dimensional anode materials to increase the bacterial loading capacity and improve substrate transport in microbial fuel cells (MFCs) is of great interest and importance. Herein, a novel graphene‐containing foam (GCF) was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. Owing to the involvement of graphene and stainless‐steel mesh in the GCF, the GCF shows high electrical conductivity, enabling the GCF to be a conductive electrode for MFC applications. With the aid of agarose, the GCF electrode possesses a supermacroporous structure with pore sizes ranging from 100–200 μm and a high surface area, which greatly increase the bacterial loading capacity. Cell viability measurements indicate that the GCF possesses excellent biocompatibility. The MFC, equipped with a 0.4 mm‐thick GCF anode, shows a maximum area power density of 786 mW m−2, which is 4.1 times that of a MFC equipped with a commercial carbon cloth anode. The simple fabrication route in combination with the outstanding electrochemical performance of the GCF indicates a promising anode for MFC applications.
Foaming up: A novel three‐dimensional supermacroporous graphene‐containing foam (GCF) anode was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. The anode outperformed carbon cloth (CC) in microbial fuel cells by 4.1 times with regard to the maximum area power density.</description><subject>agarose</subject><subject>Anodes</subject><subject>Bacteria</subject><subject>Biochemical fuel cells</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>Chemistry</subject><subject>Density</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Foams</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>microbial fuel cells</subject><subject>Microorganisms</subject><subject>Oxides - chemistry</subject><subject>Porosity</subject><subject>Sepharose - chemistry</subject><subject>Shewanella putrefaciens - cytology</subject><subject>Shewanella putrefaciens - growth & development</subject><subject>Three dimensional</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9v0zAYhi0EYmVw5YgsceGS8tmO7fg4oqWd6AYHft0s13FWjyTu7Eaw_36uOirEZZwsS8_72N_3IvSawJwA0Pd244Y5BcKBSEmfoBnhlBRMCv4UzUCVshCcqRP0IqUbAFCCsefohApQXJTVDNnGWN873Jh19NbsfBhx6PAimu3Gja6ow7gzfvTjNW6CGbBJ2OClv94Un13sQhzMaB0-G0PrcL7iS29jWHvT42ZyPa5d36eX6Fln-uRePZyn6Gtz_qVeFqtPi4v6bFVYSYEWFkzrKmIt6bghFBRUZUWZpZ1tlQPGCGGdMrRVqu0Mp5y7UnJmy7XjSlaSnaJ3B-82htvJpZ0efLL5B2Z0YUqaVEQRJoGJx1FZCQqS_I9VKElJXijL6Nt_0JswxTHPvKcEgGCwf3t-oPKmUoqu09voBxPvNAG9L1XvS9XHUnPgzYN2Wg-uPeJ_WsyAOgC_cpV3j-h0vTy__FteHLI-7dzvY9bEn1pIJrn-frXQP74R8uHq40qX7B6lXboF</recordid><startdate>20150720</startdate><enddate>20150720</enddate><creator>Yang, Lu</creator><creator>Wang, Shuqin</creator><creator>Peng, Shuqin</creator><creator>Jiang, Hongmei</creator><creator>Zhang, Youming</creator><creator>Deng, Wenfang</creator><creator>Tan, Yueming</creator><creator>Ma, Ming</creator><creator>Xie, Qingji</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>7T7</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20150720</creationdate><title>Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells</title><author>Yang, Lu ; Wang, Shuqin ; Peng, Shuqin ; Jiang, Hongmei ; Zhang, Youming ; Deng, Wenfang ; Tan, Yueming ; Ma, Ming ; Xie, Qingji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7202-c0ade81cc1f5a1209084823c2fcd9e033113f9a2d99dfa5255e4753c4be597873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>agarose</topic><topic>Anodes</topic><topic>Bacteria</topic><topic>Biochemical fuel cells</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>Chemistry</topic><topic>Density</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Foams</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>microbial fuel cells</topic><topic>Microorganisms</topic><topic>Oxides - chemistry</topic><topic>Porosity</topic><topic>Sepharose - chemistry</topic><topic>Shewanella putrefaciens - cytology</topic><topic>Shewanella putrefaciens - growth & development</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Wang, Shuqin</creatorcontrib><creatorcontrib>Peng, Shuqin</creatorcontrib><creatorcontrib>Jiang, Hongmei</creatorcontrib><creatorcontrib>Zhang, Youming</creatorcontrib><creatorcontrib>Deng, Wenfang</creatorcontrib><creatorcontrib>Tan, Yueming</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Xie, Qingji</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lu</au><au>Wang, Shuqin</au><au>Peng, Shuqin</au><au>Jiang, Hongmei</au><au>Zhang, Youming</au><au>Deng, Wenfang</au><au>Tan, Yueming</au><au>Ma, Ming</au><au>Xie, Qingji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2015-07-20</date><risdate>2015</risdate><volume>21</volume><issue>30</issue><spage>10634</spage><epage>10638</epage><pages>10634-10638</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>Facile fabrication of novel three‐dimensional anode materials to increase the bacterial loading capacity and improve substrate transport in microbial fuel cells (MFCs) is of great interest and importance. Herein, a novel graphene‐containing foam (GCF) was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. Owing to the involvement of graphene and stainless‐steel mesh in the GCF, the GCF shows high electrical conductivity, enabling the GCF to be a conductive electrode for MFC applications. With the aid of agarose, the GCF electrode possesses a supermacroporous structure with pore sizes ranging from 100–200 μm and a high surface area, which greatly increase the bacterial loading capacity. Cell viability measurements indicate that the GCF possesses excellent biocompatibility. The MFC, equipped with a 0.4 mm‐thick GCF anode, shows a maximum area power density of 786 mW m−2, which is 4.1 times that of a MFC equipped with a commercial carbon cloth anode. The simple fabrication route in combination with the outstanding electrochemical performance of the GCF indicates a promising anode for MFC applications.
Foaming up: A novel three‐dimensional supermacroporous graphene‐containing foam (GCF) anode was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. The anode outperformed carbon cloth (CC) in microbial fuel cells by 4.1 times with regard to the maximum area power density.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>26095648</pmid><doi>10.1002/chem.201501772</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2015-07, Vol.21 (30), p.10634-10638 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_1819137036 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | agarose Anodes Bacteria Biochemical fuel cells Bioelectric Energy Sources - microbiology Chemistry Density Electric Conductivity Electrodes Foams Graphene Graphite - chemistry microbial fuel cells Microorganisms Oxides - chemistry Porosity Sepharose - chemistry Shewanella putrefaciens - cytology Shewanella putrefaciens - growth & development Three dimensional |
title | Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Fabrication%20of%20Graphene-Containing%20Foam%20as%20a%20High-Performance%20Anode%20for%20Microbial%20Fuel%20Cells&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Yang,%20Lu&rft.date=2015-07-20&rft.volume=21&rft.issue=30&rft.spage=10634&rft.epage=10638&rft.pages=10634-10638&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201501772&rft_dat=%3Cproquest_cross%3E1786207187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696006306&rft_id=info:pmid/26095648&rfr_iscdi=true |