The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro

Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular neuroscience 2016-09, Vol.75, p.113-121
Hauptverfasser: González-Castillo, Celia, Ortuño-Sahagún, Daniel, Guzmán-Brambila, Carolina, Márquez-Aguirre, Ana Laura, Raisman-Vozari, Rita, Pallás, Mercé, Rojas-Mayorquín, Argelia E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue
container_start_page 113
container_title Molecular and cellular neuroscience
container_volume 75
creator González-Castillo, Celia
Ortuño-Sahagún, Daniel
Guzmán-Brambila, Carolina
Márquez-Aguirre, Ana Laura
Raisman-Vozari, Rita
Pallás, Mercé
Rojas-Mayorquín, Argelia E.
description Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score>3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro. •Expression of genes for neuroprotection, cell differentiation / proliferation is modified in the hippocampus of PTN-/- mice.•PTN silencing in NPCs in vitro induces an increase in synaptophysin expression.•The silencing of PTN upregulates the expression of Caspase 6, Ers 1, Mgst3 and 18s RNA, in vivo and in vitro.•Signaling in the absence of PTN is mediated by a decrease in AKT phosphorylation and a decrease in expression of c-Jun.
doi_str_mv 10.1016/j.mcn.2016.07.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1819135211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044743116300811</els_id><sourcerecordid>1819135211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-5c357e95685e0ff03730b2e412b3bc95bcc7c520bed7379bc9eebaf7dad5d6203</originalsourceid><addsrcrecordid>eNqNUUtr3DAYFKWlmyb9Ab0EHXOxq4dlrekpLElaCPSSnIUen7NabMuR7CX77yvjbY-hJw2jmZGYQegbJSUltP5-KHs7lCzDksiSkOoDuqCkEUXDmfy44KoqZMXpBn1J6UAIEazhn9GGyareNrK-QKenPWBtEgwWcGjx2IEPUwzj3g-4D27u9AQJv8AAGN7GCCn5MOB8OWXj3o9jsLof57RQR38MWA9uwRYiGOg6HfFL1MPcQaa67qzLL1yhT63uEnw9n5fo-f7uafezePz98Gt3-1hYvq2nQlguJDSi3gogbUu45MQwqCgz3NhGGGulFYwYcJLLJlMARrfSaSdczQi_RDdr7hjD6wxpUr1Py1f0AGFOim5pQ7lglP6PNPdW5aKzlK5SG0NKEVo1Rt_reFKUqGUcdVB5HLWMo4hUq-f6HD-bHtw_x981suDHKoDcx9FDVMn6ZRnnI9hJueDfif8D46qhhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814684004</pqid></control><display><type>article</type><title>The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>González-Castillo, Celia ; Ortuño-Sahagún, Daniel ; Guzmán-Brambila, Carolina ; Márquez-Aguirre, Ana Laura ; Raisman-Vozari, Rita ; Pallás, Mercé ; Rojas-Mayorquín, Argelia E.</creator><creatorcontrib>González-Castillo, Celia ; Ortuño-Sahagún, Daniel ; Guzmán-Brambila, Carolina ; Márquez-Aguirre, Ana Laura ; Raisman-Vozari, Rita ; Pallás, Mercé ; Rojas-Mayorquín, Argelia E.</creatorcontrib><description>Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score&gt;3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro. •Expression of genes for neuroprotection, cell differentiation / proliferation is modified in the hippocampus of PTN-/- mice.•PTN silencing in NPCs in vitro induces an increase in synaptophysin expression.•The silencing of PTN upregulates the expression of Caspase 6, Ers 1, Mgst3 and 18s RNA, in vivo and in vitro.•Signaling in the absence of PTN is mediated by a decrease in AKT phosphorylation and a decrease in expression of c-Jun.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2016.07.004</identifier><identifier>PMID: 27468976</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AKT ; Animals ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Caspase 6 ; Caspase 6 - genetics ; Caspase 6 - metabolism ; Cells, Cultured ; Cerebellar granule cells ; Cerebellum - cytology ; Cerebellum - metabolism ; Cytokines - deficiency ; Cytokines - genetics ; Cytokines - metabolism ; Gene expression ; Hippocampus ; Hippocampus - cytology ; Hippocampus - metabolism ; JNK Mitogen-Activated Protein Kinases - genetics ; JNK Mitogen-Activated Protein Kinases - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Neuromodulation ; Neurons - metabolism ; Pleiotrophin ; Proto-Oncogene Proteins c-akt - metabolism ; Rats ; Rats, Sprague-Dawley ; RNA, Ribosomal, 18S - genetics ; RNA, Ribosomal, 18S - metabolism ; Signal Transduction ; Synaptophysin - genetics ; Synaptophysin - metabolism ; Transcriptome</subject><ispartof>Molecular and cellular neuroscience, 2016-09, Vol.75, p.113-121</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-5c357e95685e0ff03730b2e412b3bc95bcc7c520bed7379bc9eebaf7dad5d6203</citedby><cites>FETCH-LOGICAL-c386t-5c357e95685e0ff03730b2e412b3bc95bcc7c520bed7379bc9eebaf7dad5d6203</cites><orcidid>0000-0001-5662-9076 ; 0000-0002-7443-2514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1044743116300811$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27468976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Castillo, Celia</creatorcontrib><creatorcontrib>Ortuño-Sahagún, Daniel</creatorcontrib><creatorcontrib>Guzmán-Brambila, Carolina</creatorcontrib><creatorcontrib>Márquez-Aguirre, Ana Laura</creatorcontrib><creatorcontrib>Raisman-Vozari, Rita</creatorcontrib><creatorcontrib>Pallás, Mercé</creatorcontrib><creatorcontrib>Rojas-Mayorquín, Argelia E.</creatorcontrib><title>The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score&gt;3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro. •Expression of genes for neuroprotection, cell differentiation / proliferation is modified in the hippocampus of PTN-/- mice.•PTN silencing in NPCs in vitro induces an increase in synaptophysin expression.•The silencing of PTN upregulates the expression of Caspase 6, Ers 1, Mgst3 and 18s RNA, in vivo and in vitro.•Signaling in the absence of PTN is mediated by a decrease in AKT phosphorylation and a decrease in expression of c-Jun.</description><subject>AKT</subject><subject>Animals</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Caspase 6</subject><subject>Caspase 6 - genetics</subject><subject>Caspase 6 - metabolism</subject><subject>Cells, Cultured</subject><subject>Cerebellar granule cells</subject><subject>Cerebellum - cytology</subject><subject>Cerebellum - metabolism</subject><subject>Cytokines - deficiency</subject><subject>Cytokines - genetics</subject><subject>Cytokines - metabolism</subject><subject>Gene expression</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>JNK Mitogen-Activated Protein Kinases - genetics</subject><subject>JNK Mitogen-Activated Protein Kinases - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neuromodulation</subject><subject>Neurons - metabolism</subject><subject>Pleiotrophin</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Ribosomal, 18S - genetics</subject><subject>RNA, Ribosomal, 18S - metabolism</subject><subject>Signal Transduction</subject><subject>Synaptophysin - genetics</subject><subject>Synaptophysin - metabolism</subject><subject>Transcriptome</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUUtr3DAYFKWlmyb9Ab0EHXOxq4dlrekpLElaCPSSnIUen7NabMuR7CX77yvjbY-hJw2jmZGYQegbJSUltP5-KHs7lCzDksiSkOoDuqCkEUXDmfy44KoqZMXpBn1J6UAIEazhn9GGyareNrK-QKenPWBtEgwWcGjx2IEPUwzj3g-4D27u9AQJv8AAGN7GCCn5MOB8OWXj3o9jsLof57RQR38MWA9uwRYiGOg6HfFL1MPcQaa67qzLL1yhT63uEnw9n5fo-f7uafezePz98Gt3-1hYvq2nQlguJDSi3gogbUu45MQwqCgz3NhGGGulFYwYcJLLJlMARrfSaSdczQi_RDdr7hjD6wxpUr1Py1f0AGFOim5pQ7lglP6PNPdW5aKzlK5SG0NKEVo1Rt_reFKUqGUcdVB5HLWMo4hUq-f6HD-bHtw_x981suDHKoDcx9FDVMn6ZRnnI9hJueDfif8D46qhhQ</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>González-Castillo, Celia</creator><creator>Ortuño-Sahagún, Daniel</creator><creator>Guzmán-Brambila, Carolina</creator><creator>Márquez-Aguirre, Ana Laura</creator><creator>Raisman-Vozari, Rita</creator><creator>Pallás, Mercé</creator><creator>Rojas-Mayorquín, Argelia E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><orcidid>https://orcid.org/0000-0001-5662-9076</orcidid><orcidid>https://orcid.org/0000-0002-7443-2514</orcidid></search><sort><creationdate>201609</creationdate><title>The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro</title><author>González-Castillo, Celia ; Ortuño-Sahagún, Daniel ; Guzmán-Brambila, Carolina ; Márquez-Aguirre, Ana Laura ; Raisman-Vozari, Rita ; Pallás, Mercé ; Rojas-Mayorquín, Argelia E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-5c357e95685e0ff03730b2e412b3bc95bcc7c520bed7379bc9eebaf7dad5d6203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>AKT</topic><topic>Animals</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Caspase 6</topic><topic>Caspase 6 - genetics</topic><topic>Caspase 6 - metabolism</topic><topic>Cells, Cultured</topic><topic>Cerebellar granule cells</topic><topic>Cerebellum - cytology</topic><topic>Cerebellum - metabolism</topic><topic>Cytokines - deficiency</topic><topic>Cytokines - genetics</topic><topic>Cytokines - metabolism</topic><topic>Gene expression</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>JNK Mitogen-Activated Protein Kinases - genetics</topic><topic>JNK Mitogen-Activated Protein Kinases - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neuromodulation</topic><topic>Neurons - metabolism</topic><topic>Pleiotrophin</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Ribosomal, 18S - genetics</topic><topic>RNA, Ribosomal, 18S - metabolism</topic><topic>Signal Transduction</topic><topic>Synaptophysin - genetics</topic><topic>Synaptophysin - metabolism</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Castillo, Celia</creatorcontrib><creatorcontrib>Ortuño-Sahagún, Daniel</creatorcontrib><creatorcontrib>Guzmán-Brambila, Carolina</creatorcontrib><creatorcontrib>Márquez-Aguirre, Ana Laura</creatorcontrib><creatorcontrib>Raisman-Vozari, Rita</creatorcontrib><creatorcontrib>Pallás, Mercé</creatorcontrib><creatorcontrib>Rojas-Mayorquín, Argelia E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Castillo, Celia</au><au>Ortuño-Sahagún, Daniel</au><au>Guzmán-Brambila, Carolina</au><au>Márquez-Aguirre, Ana Laura</au><au>Raisman-Vozari, Rita</au><au>Pallás, Mercé</au><au>Rojas-Mayorquín, Argelia E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2016-09</date><risdate>2016</risdate><volume>75</volume><spage>113</spage><epage>121</epage><pages>113-121</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score&gt;3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro. •Expression of genes for neuroprotection, cell differentiation / proliferation is modified in the hippocampus of PTN-/- mice.•PTN silencing in NPCs in vitro induces an increase in synaptophysin expression.•The silencing of PTN upregulates the expression of Caspase 6, Ers 1, Mgst3 and 18s RNA, in vivo and in vitro.•Signaling in the absence of PTN is mediated by a decrease in AKT phosphorylation and a decrease in expression of c-Jun.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27468976</pmid><doi>10.1016/j.mcn.2016.07.004</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5662-9076</orcidid><orcidid>https://orcid.org/0000-0002-7443-2514</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1044-7431
ispartof Molecular and cellular neuroscience, 2016-09, Vol.75, p.113-121
issn 1044-7431
1095-9327
language eng
recordid cdi_proquest_miscellaneous_1819135211
source MEDLINE; Elsevier ScienceDirect Journals
subjects AKT
Animals
Carrier Proteins - genetics
Carrier Proteins - metabolism
Caspase 6
Caspase 6 - genetics
Caspase 6 - metabolism
Cells, Cultured
Cerebellar granule cells
Cerebellum - cytology
Cerebellum - metabolism
Cytokines - deficiency
Cytokines - genetics
Cytokines - metabolism
Gene expression
Hippocampus
Hippocampus - cytology
Hippocampus - metabolism
JNK Mitogen-Activated Protein Kinases - genetics
JNK Mitogen-Activated Protein Kinases - metabolism
Male
Mice
Mice, Inbred C57BL
Neuromodulation
Neurons - metabolism
Pleiotrophin
Proto-Oncogene Proteins c-akt - metabolism
Rats
Rats, Sprague-Dawley
RNA, Ribosomal, 18S - genetics
RNA, Ribosomal, 18S - metabolism
Signal Transduction
Synaptophysin - genetics
Synaptophysin - metabolism
Transcriptome
title The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20absence%20of%20pleiotrophin%20modulates%20gene%20expression%20in%20the%20hippocampus%20in%20vivo%20and%20in%20cerebellar%20granule%20cells%20in%20vitro&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Gonz%C3%A1lez-Castillo,%20Celia&rft.date=2016-09&rft.volume=75&rft.spage=113&rft.epage=121&rft.pages=113-121&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2016.07.004&rft_dat=%3Cproquest_cross%3E1819135211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814684004&rft_id=info:pmid/27468976&rft_els_id=S1044743116300811&rfr_iscdi=true