The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro
Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular neuroscience 2016-09, Vol.75, p.113-121 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | |
container_start_page | 113 |
container_title | Molecular and cellular neuroscience |
container_volume | 75 |
creator | González-Castillo, Celia Ortuño-Sahagún, Daniel Guzmán-Brambila, Carolina Márquez-Aguirre, Ana Laura Raisman-Vozari, Rita Pallás, Mercé Rojas-Mayorquín, Argelia E. |
description | Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score>3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro.
•Expression of genes for neuroprotection, cell differentiation / proliferation is modified in the hippocampus of PTN-/- mice.•PTN silencing in NPCs in vitro induces an increase in synaptophysin expression.•The silencing of PTN upregulates the expression of Caspase 6, Ers 1, Mgst3 and 18s RNA, in vivo and in vitro.•Signaling in the absence of PTN is mediated by a decrease in AKT phosphorylation and a decrease in expression of c-Jun. |
doi_str_mv | 10.1016/j.mcn.2016.07.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1819135211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044743116300811</els_id><sourcerecordid>1819135211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-5c357e95685e0ff03730b2e412b3bc95bcc7c520bed7379bc9eebaf7dad5d6203</originalsourceid><addsrcrecordid>eNqNUUtr3DAYFKWlmyb9Ab0EHXOxq4dlrekpLElaCPSSnIUen7NabMuR7CX77yvjbY-hJw2jmZGYQegbJSUltP5-KHs7lCzDksiSkOoDuqCkEUXDmfy44KoqZMXpBn1J6UAIEazhn9GGyareNrK-QKenPWBtEgwWcGjx2IEPUwzj3g-4D27u9AQJv8AAGN7GCCn5MOB8OWXj3o9jsLof57RQR38MWA9uwRYiGOg6HfFL1MPcQaa67qzLL1yhT63uEnw9n5fo-f7uafezePz98Gt3-1hYvq2nQlguJDSi3gogbUu45MQwqCgz3NhGGGulFYwYcJLLJlMARrfSaSdczQi_RDdr7hjD6wxpUr1Py1f0AGFOim5pQ7lglP6PNPdW5aKzlK5SG0NKEVo1Rt_reFKUqGUcdVB5HLWMo4hUq-f6HD-bHtw_x981suDHKoDcx9FDVMn6ZRnnI9hJueDfif8D46qhhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814684004</pqid></control><display><type>article</type><title>The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>González-Castillo, Celia ; Ortuño-Sahagún, Daniel ; Guzmán-Brambila, Carolina ; Márquez-Aguirre, Ana Laura ; Raisman-Vozari, Rita ; Pallás, Mercé ; Rojas-Mayorquín, Argelia E.</creator><creatorcontrib>González-Castillo, Celia ; Ortuño-Sahagún, Daniel ; Guzmán-Brambila, Carolina ; Márquez-Aguirre, Ana Laura ; Raisman-Vozari, Rita ; Pallás, Mercé ; Rojas-Mayorquín, Argelia E.</creatorcontrib><description>Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score>3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro.
•Expression of genes for neuroprotection, cell differentiation / proliferation is modified in the hippocampus of PTN-/- mice.•PTN silencing in NPCs in vitro induces an increase in synaptophysin expression.•The silencing of PTN upregulates the expression of Caspase 6, Ers 1, Mgst3 and 18s RNA, in vivo and in vitro.•Signaling in the absence of PTN is mediated by a decrease in AKT phosphorylation and a decrease in expression of c-Jun.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2016.07.004</identifier><identifier>PMID: 27468976</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AKT ; Animals ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Caspase 6 ; Caspase 6 - genetics ; Caspase 6 - metabolism ; Cells, Cultured ; Cerebellar granule cells ; Cerebellum - cytology ; Cerebellum - metabolism ; Cytokines - deficiency ; Cytokines - genetics ; Cytokines - metabolism ; Gene expression ; Hippocampus ; Hippocampus - cytology ; Hippocampus - metabolism ; JNK Mitogen-Activated Protein Kinases - genetics ; JNK Mitogen-Activated Protein Kinases - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Neuromodulation ; Neurons - metabolism ; Pleiotrophin ; Proto-Oncogene Proteins c-akt - metabolism ; Rats ; Rats, Sprague-Dawley ; RNA, Ribosomal, 18S - genetics ; RNA, Ribosomal, 18S - metabolism ; Signal Transduction ; Synaptophysin - genetics ; Synaptophysin - metabolism ; Transcriptome</subject><ispartof>Molecular and cellular neuroscience, 2016-09, Vol.75, p.113-121</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-5c357e95685e0ff03730b2e412b3bc95bcc7c520bed7379bc9eebaf7dad5d6203</citedby><cites>FETCH-LOGICAL-c386t-5c357e95685e0ff03730b2e412b3bc95bcc7c520bed7379bc9eebaf7dad5d6203</cites><orcidid>0000-0001-5662-9076 ; 0000-0002-7443-2514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1044743116300811$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27468976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Castillo, Celia</creatorcontrib><creatorcontrib>Ortuño-Sahagún, Daniel</creatorcontrib><creatorcontrib>Guzmán-Brambila, Carolina</creatorcontrib><creatorcontrib>Márquez-Aguirre, Ana Laura</creatorcontrib><creatorcontrib>Raisman-Vozari, Rita</creatorcontrib><creatorcontrib>Pallás, Mercé</creatorcontrib><creatorcontrib>Rojas-Mayorquín, Argelia E.</creatorcontrib><title>The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score>3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro.
•Expression of genes for neuroprotection, cell differentiation / proliferation is modified in the hippocampus of PTN-/- mice.•PTN silencing in NPCs in vitro induces an increase in synaptophysin expression.•The silencing of PTN upregulates the expression of Caspase 6, Ers 1, Mgst3 and 18s RNA, in vivo and in vitro.•Signaling in the absence of PTN is mediated by a decrease in AKT phosphorylation and a decrease in expression of c-Jun.</description><subject>AKT</subject><subject>Animals</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Caspase 6</subject><subject>Caspase 6 - genetics</subject><subject>Caspase 6 - metabolism</subject><subject>Cells, Cultured</subject><subject>Cerebellar granule cells</subject><subject>Cerebellum - cytology</subject><subject>Cerebellum - metabolism</subject><subject>Cytokines - deficiency</subject><subject>Cytokines - genetics</subject><subject>Cytokines - metabolism</subject><subject>Gene expression</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>JNK Mitogen-Activated Protein Kinases - genetics</subject><subject>JNK Mitogen-Activated Protein Kinases - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neuromodulation</subject><subject>Neurons - metabolism</subject><subject>Pleiotrophin</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Ribosomal, 18S - genetics</subject><subject>RNA, Ribosomal, 18S - metabolism</subject><subject>Signal Transduction</subject><subject>Synaptophysin - genetics</subject><subject>Synaptophysin - metabolism</subject><subject>Transcriptome</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUUtr3DAYFKWlmyb9Ab0EHXOxq4dlrekpLElaCPSSnIUen7NabMuR7CX77yvjbY-hJw2jmZGYQegbJSUltP5-KHs7lCzDksiSkOoDuqCkEUXDmfy44KoqZMXpBn1J6UAIEazhn9GGyareNrK-QKenPWBtEgwWcGjx2IEPUwzj3g-4D27u9AQJv8AAGN7GCCn5MOB8OWXj3o9jsLof57RQR38MWA9uwRYiGOg6HfFL1MPcQaa67qzLL1yhT63uEnw9n5fo-f7uafezePz98Gt3-1hYvq2nQlguJDSi3gogbUu45MQwqCgz3NhGGGulFYwYcJLLJlMARrfSaSdczQi_RDdr7hjD6wxpUr1Py1f0AGFOim5pQ7lglP6PNPdW5aKzlK5SG0NKEVo1Rt_reFKUqGUcdVB5HLWMo4hUq-f6HD-bHtw_x981suDHKoDcx9FDVMn6ZRnnI9hJueDfif8D46qhhQ</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>González-Castillo, Celia</creator><creator>Ortuño-Sahagún, Daniel</creator><creator>Guzmán-Brambila, Carolina</creator><creator>Márquez-Aguirre, Ana Laura</creator><creator>Raisman-Vozari, Rita</creator><creator>Pallás, Mercé</creator><creator>Rojas-Mayorquín, Argelia E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><orcidid>https://orcid.org/0000-0001-5662-9076</orcidid><orcidid>https://orcid.org/0000-0002-7443-2514</orcidid></search><sort><creationdate>201609</creationdate><title>The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro</title><author>González-Castillo, Celia ; Ortuño-Sahagún, Daniel ; Guzmán-Brambila, Carolina ; Márquez-Aguirre, Ana Laura ; Raisman-Vozari, Rita ; Pallás, Mercé ; Rojas-Mayorquín, Argelia E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-5c357e95685e0ff03730b2e412b3bc95bcc7c520bed7379bc9eebaf7dad5d6203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>AKT</topic><topic>Animals</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Caspase 6</topic><topic>Caspase 6 - genetics</topic><topic>Caspase 6 - metabolism</topic><topic>Cells, Cultured</topic><topic>Cerebellar granule cells</topic><topic>Cerebellum - cytology</topic><topic>Cerebellum - metabolism</topic><topic>Cytokines - deficiency</topic><topic>Cytokines - genetics</topic><topic>Cytokines - metabolism</topic><topic>Gene expression</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>JNK Mitogen-Activated Protein Kinases - genetics</topic><topic>JNK Mitogen-Activated Protein Kinases - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neuromodulation</topic><topic>Neurons - metabolism</topic><topic>Pleiotrophin</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Ribosomal, 18S - genetics</topic><topic>RNA, Ribosomal, 18S - metabolism</topic><topic>Signal Transduction</topic><topic>Synaptophysin - genetics</topic><topic>Synaptophysin - metabolism</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Castillo, Celia</creatorcontrib><creatorcontrib>Ortuño-Sahagún, Daniel</creatorcontrib><creatorcontrib>Guzmán-Brambila, Carolina</creatorcontrib><creatorcontrib>Márquez-Aguirre, Ana Laura</creatorcontrib><creatorcontrib>Raisman-Vozari, Rita</creatorcontrib><creatorcontrib>Pallás, Mercé</creatorcontrib><creatorcontrib>Rojas-Mayorquín, Argelia E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Castillo, Celia</au><au>Ortuño-Sahagún, Daniel</au><au>Guzmán-Brambila, Carolina</au><au>Márquez-Aguirre, Ana Laura</au><au>Raisman-Vozari, Rita</au><au>Pallás, Mercé</au><au>Rojas-Mayorquín, Argelia E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2016-09</date><risdate>2016</risdate><volume>75</volume><spage>113</spage><epage>121</epage><pages>113-121</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score>3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro.
•Expression of genes for neuroprotection, cell differentiation / proliferation is modified in the hippocampus of PTN-/- mice.•PTN silencing in NPCs in vitro induces an increase in synaptophysin expression.•The silencing of PTN upregulates the expression of Caspase 6, Ers 1, Mgst3 and 18s RNA, in vivo and in vitro.•Signaling in the absence of PTN is mediated by a decrease in AKT phosphorylation and a decrease in expression of c-Jun.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27468976</pmid><doi>10.1016/j.mcn.2016.07.004</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5662-9076</orcidid><orcidid>https://orcid.org/0000-0002-7443-2514</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-7431 |
ispartof | Molecular and cellular neuroscience, 2016-09, Vol.75, p.113-121 |
issn | 1044-7431 1095-9327 |
language | eng |
recordid | cdi_proquest_miscellaneous_1819135211 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | AKT Animals Carrier Proteins - genetics Carrier Proteins - metabolism Caspase 6 Caspase 6 - genetics Caspase 6 - metabolism Cells, Cultured Cerebellar granule cells Cerebellum - cytology Cerebellum - metabolism Cytokines - deficiency Cytokines - genetics Cytokines - metabolism Gene expression Hippocampus Hippocampus - cytology Hippocampus - metabolism JNK Mitogen-Activated Protein Kinases - genetics JNK Mitogen-Activated Protein Kinases - metabolism Male Mice Mice, Inbred C57BL Neuromodulation Neurons - metabolism Pleiotrophin Proto-Oncogene Proteins c-akt - metabolism Rats Rats, Sprague-Dawley RNA, Ribosomal, 18S - genetics RNA, Ribosomal, 18S - metabolism Signal Transduction Synaptophysin - genetics Synaptophysin - metabolism Transcriptome |
title | The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20absence%20of%20pleiotrophin%20modulates%20gene%20expression%20in%20the%20hippocampus%20in%20vivo%20and%20in%20cerebellar%20granule%20cells%20in%20vitro&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Gonz%C3%A1lez-Castillo,%20Celia&rft.date=2016-09&rft.volume=75&rft.spage=113&rft.epage=121&rft.pages=113-121&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2016.07.004&rft_dat=%3Cproquest_cross%3E1819135211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814684004&rft_id=info:pmid/27468976&rft_els_id=S1044743116300811&rfr_iscdi=true |