Identification of a triplet pair intermediate in singlet exciton fission in solution

Significance We use transient spectroscopy to investigate the mechanism of singlet exciton fission, a quantum mechanical phenomenon in some organic molecules in which a spin-singlet excited state can split into two spin-triplet states. This process may be harnessed to boost solar cell efficiencies,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-06, Vol.112 (25), p.7656-7661
Hauptverfasser: Stern, Hannah L, Andrew J. Musser, Simon Gelinas, Patrick Parkinson, Laura M. Herz, Matthew J. Bruzek, John Anthony, Richard H. Friend, Brian J. Walker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7661
container_issue 25
container_start_page 7656
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Stern, Hannah L
Andrew J. Musser
Simon Gelinas
Patrick Parkinson
Laura M. Herz
Matthew J. Bruzek
John Anthony
Richard H. Friend
Brian J. Walker
description Significance We use transient spectroscopy to investigate the mechanism of singlet exciton fission, a quantum mechanical phenomenon in some organic molecules in which a spin-singlet excited state can split into two spin-triplet states. This process may be harnessed to boost solar cell efficiencies, but the underlying mechanism remains poorly understood. Central to most models is a triplet pair state, consisting of two triplets entangled into an overall spin-singlet configuration, but it has never before been optically detected. In a solution-based system, we detect a state with simultaneous singlet and triplet exciton character that dissociates to form triplet excitons in 120% yield. We consider that this intermediate constitutes a triplet pair state, and its observation allows important insight into the nature of triplet exciton coupling. Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley–Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]—tetracene we find rapid (
doi_str_mv 10.1073/pnas.1503471112
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1817825856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26463844</jstor_id><sourcerecordid>26463844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-b7262d408194e3c77749cef49ba81ae9d300d533cfd39a4ca3a114117ae5cf033</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEokvhzAmIxIVL2hl_xPYFCVW0VKrEgfZseR1n8SobB9tB8N_jsMu2cOFkWfN7T_P8XFUvEc4QBD2fRpPOkANlAhHJo2qFoLBpmYLH1QqAiEYywk6qZyltAUBxCU-rE9JCCxTUqrq97tyYfe-tyT6MdehrU-fop8HlejI-1n7MLu5c50125VInP26WofthfS6K3qe0KJdRGObF5Xn1pDdDci8O52l1d_nx9uJTc_P56vriw01juYLcrAVpScdAomKOWiEEU9b1TK2NRONURwE6TqntO6oMs4YaRIYojOO2B0pPq_d732lelw1tSRLNoKfodyb-1MF4_fdk9F_1JnzXjEmOjBeDdweDGL7NLmW988m6YTCjC3PSKFFIwiVv_4-2CokkVGBB3_6DbsMcx_ISC0WEogoW6nxP2RhSiq4_7o2gl3L1Uq6-L7coXj-Me-T_tFmANwdgUR7tkGjCtWh_p3i1J7Yph_jAgbVUMnbv0JugzSb6pO--EMC2fCVABEl_AYGYvYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692793901</pqid></control><display><type>article</type><title>Identification of a triplet pair intermediate in singlet exciton fission in solution</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Stern, Hannah L ; Andrew J. Musser ; Simon Gelinas ; Patrick Parkinson ; Laura M. Herz ; Matthew J. Bruzek ; John Anthony ; Richard H. Friend ; Brian J. Walker</creator><creatorcontrib>Stern, Hannah L ; Andrew J. Musser ; Simon Gelinas ; Patrick Parkinson ; Laura M. Herz ; Matthew J. Bruzek ; John Anthony ; Richard H. Friend ; Brian J. Walker</creatorcontrib><description>Significance We use transient spectroscopy to investigate the mechanism of singlet exciton fission, a quantum mechanical phenomenon in some organic molecules in which a spin-singlet excited state can split into two spin-triplet states. This process may be harnessed to boost solar cell efficiencies, but the underlying mechanism remains poorly understood. Central to most models is a triplet pair state, consisting of two triplets entangled into an overall spin-singlet configuration, but it has never before been optically detected. In a solution-based system, we detect a state with simultaneous singlet and triplet exciton character that dissociates to form triplet excitons in 120% yield. We consider that this intermediate constitutes a triplet pair state, and its observation allows important insight into the nature of triplet exciton coupling. Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley–Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]—tetracene we find rapid (&lt;100 ps) formation of excimers and a slower (∼10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1503471112</identifier><identifier>PMID: 26060309</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>excimer ; Identification ; Molecules ; photochemistry ; Photovoltaic cells ; Physical Sciences ; singlet fission ; spectroscopy ; Spectrum analysis ; TIPS–tetracene ; triplet</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-06, Vol.112 (25), p.7656-7661</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jun 23, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-b7262d408194e3c77749cef49ba81ae9d300d533cfd39a4ca3a114117ae5cf033</citedby><cites>FETCH-LOGICAL-c590t-b7262d408194e3c77749cef49ba81ae9d300d533cfd39a4ca3a114117ae5cf033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26463844$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26463844$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26060309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stern, Hannah L</creatorcontrib><creatorcontrib>Andrew J. Musser</creatorcontrib><creatorcontrib>Simon Gelinas</creatorcontrib><creatorcontrib>Patrick Parkinson</creatorcontrib><creatorcontrib>Laura M. Herz</creatorcontrib><creatorcontrib>Matthew J. Bruzek</creatorcontrib><creatorcontrib>John Anthony</creatorcontrib><creatorcontrib>Richard H. Friend</creatorcontrib><creatorcontrib>Brian J. Walker</creatorcontrib><title>Identification of a triplet pair intermediate in singlet exciton fission in solution</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance We use transient spectroscopy to investigate the mechanism of singlet exciton fission, a quantum mechanical phenomenon in some organic molecules in which a spin-singlet excited state can split into two spin-triplet states. This process may be harnessed to boost solar cell efficiencies, but the underlying mechanism remains poorly understood. Central to most models is a triplet pair state, consisting of two triplets entangled into an overall spin-singlet configuration, but it has never before been optically detected. In a solution-based system, we detect a state with simultaneous singlet and triplet exciton character that dissociates to form triplet excitons in 120% yield. We consider that this intermediate constitutes a triplet pair state, and its observation allows important insight into the nature of triplet exciton coupling. Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley–Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]—tetracene we find rapid (&lt;100 ps) formation of excimers and a slower (∼10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process.</description><subject>excimer</subject><subject>Identification</subject><subject>Molecules</subject><subject>photochemistry</subject><subject>Photovoltaic cells</subject><subject>Physical Sciences</subject><subject>singlet fission</subject><subject>spectroscopy</subject><subject>Spectrum analysis</subject><subject>TIPS–tetracene</subject><subject>triplet</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFks1v1DAQxSMEokvhzAmIxIVL2hl_xPYFCVW0VKrEgfZseR1n8SobB9tB8N_jsMu2cOFkWfN7T_P8XFUvEc4QBD2fRpPOkANlAhHJo2qFoLBpmYLH1QqAiEYywk6qZyltAUBxCU-rE9JCCxTUqrq97tyYfe-tyT6MdehrU-fop8HlejI-1n7MLu5c50125VInP26WofthfS6K3qe0KJdRGObF5Xn1pDdDci8O52l1d_nx9uJTc_P56vriw01juYLcrAVpScdAomKOWiEEU9b1TK2NRONURwE6TqntO6oMs4YaRIYojOO2B0pPq_d732lelw1tSRLNoKfodyb-1MF4_fdk9F_1JnzXjEmOjBeDdweDGL7NLmW988m6YTCjC3PSKFFIwiVv_4-2CokkVGBB3_6DbsMcx_ISC0WEogoW6nxP2RhSiq4_7o2gl3L1Uq6-L7coXj-Me-T_tFmANwdgUR7tkGjCtWh_p3i1J7Yph_jAgbVUMnbv0JugzSb6pO--EMC2fCVABEl_AYGYvYg</recordid><startdate>20150623</startdate><enddate>20150623</enddate><creator>Stern, Hannah L</creator><creator>Andrew J. Musser</creator><creator>Simon Gelinas</creator><creator>Patrick Parkinson</creator><creator>Laura M. Herz</creator><creator>Matthew J. Bruzek</creator><creator>John Anthony</creator><creator>Richard H. Friend</creator><creator>Brian J. Walker</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150623</creationdate><title>Identification of a triplet pair intermediate in singlet exciton fission in solution</title><author>Stern, Hannah L ; Andrew J. Musser ; Simon Gelinas ; Patrick Parkinson ; Laura M. Herz ; Matthew J. Bruzek ; John Anthony ; Richard H. Friend ; Brian J. Walker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-b7262d408194e3c77749cef49ba81ae9d300d533cfd39a4ca3a114117ae5cf033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>excimer</topic><topic>Identification</topic><topic>Molecules</topic><topic>photochemistry</topic><topic>Photovoltaic cells</topic><topic>Physical Sciences</topic><topic>singlet fission</topic><topic>spectroscopy</topic><topic>Spectrum analysis</topic><topic>TIPS–tetracene</topic><topic>triplet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stern, Hannah L</creatorcontrib><creatorcontrib>Andrew J. Musser</creatorcontrib><creatorcontrib>Simon Gelinas</creatorcontrib><creatorcontrib>Patrick Parkinson</creatorcontrib><creatorcontrib>Laura M. Herz</creatorcontrib><creatorcontrib>Matthew J. Bruzek</creatorcontrib><creatorcontrib>John Anthony</creatorcontrib><creatorcontrib>Richard H. Friend</creatorcontrib><creatorcontrib>Brian J. Walker</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stern, Hannah L</au><au>Andrew J. Musser</au><au>Simon Gelinas</au><au>Patrick Parkinson</au><au>Laura M. Herz</au><au>Matthew J. Bruzek</au><au>John Anthony</au><au>Richard H. Friend</au><au>Brian J. Walker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a triplet pair intermediate in singlet exciton fission in solution</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-06-23</date><risdate>2015</risdate><volume>112</volume><issue>25</issue><spage>7656</spage><epage>7661</epage><pages>7656-7661</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance We use transient spectroscopy to investigate the mechanism of singlet exciton fission, a quantum mechanical phenomenon in some organic molecules in which a spin-singlet excited state can split into two spin-triplet states. This process may be harnessed to boost solar cell efficiencies, but the underlying mechanism remains poorly understood. Central to most models is a triplet pair state, consisting of two triplets entangled into an overall spin-singlet configuration, but it has never before been optically detected. In a solution-based system, we detect a state with simultaneous singlet and triplet exciton character that dissociates to form triplet excitons in 120% yield. We consider that this intermediate constitutes a triplet pair state, and its observation allows important insight into the nature of triplet exciton coupling. Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley–Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]—tetracene we find rapid (&lt;100 ps) formation of excimers and a slower (∼10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26060309</pmid><doi>10.1073/pnas.1503471112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-06, Vol.112 (25), p.7656-7661
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1817825856
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects excimer
Identification
Molecules
photochemistry
Photovoltaic cells
Physical Sciences
singlet fission
spectroscopy
Spectrum analysis
TIPS–tetracene
triplet
title Identification of a triplet pair intermediate in singlet exciton fission in solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20triplet%20pair%20intermediate%20in%20singlet%20exciton%20fission%20in%20solution&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stern,%20Hannah%20L&rft.date=2015-06-23&rft.volume=112&rft.issue=25&rft.spage=7656&rft.epage=7661&rft.pages=7656-7661&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1503471112&rft_dat=%3Cjstor_proqu%3E26463844%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692793901&rft_id=info:pmid/26060309&rft_jstor_id=26463844&rfr_iscdi=true