Convectively driven mixed layer growth in a rotating, stratified fluid

A laboratory experiment has been conducted to examine deep convective processes in a stratified ocean. For convenience, cooling at the ocean surface is modelled in the laboratory by heating from below. A convective mixed layer was generated by heating over the central portion of the base of a rotati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Deep-sea research. Part I, Oceanographic research papers Oceanographic research papers, 1995, Vol.42 (3), p.331-349
Hauptverfasser: Ivey, G.N., Taylor, J.R., Coates, M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue 3
container_start_page 331
container_title Deep-sea research. Part I, Oceanographic research papers
container_volume 42
creator Ivey, G.N.
Taylor, J.R.
Coates, M.J.
description A laboratory experiment has been conducted to examine deep convective processes in a stratified ocean. For convenience, cooling at the ocean surface is modelled in the laboratory by heating from below. A convective mixed layer was generated by heating over the central portion of the base of a rotating, thermally stratified fluid. In addition to the convective forcing, the initial stratification could also be pre-conditioned by rotating a false bottom in the tank, thus generating a cyclonic or anticyclonic initial circulation in the tank as desired. Following the initiation of the buoyancy flux, a mixed layer forms above the buoyancy source and erodes the overlying thermal stratification. Initially confined by rotation, the growth of the mixed layer depth with time is described by a one-dimensional deepening law. The front separating the heated convecting fluid from the stratified, quiescent ambient fluid eventually becomes unstable, generating a field of baroclinic eddies. The rate of deepening of the mixed layer slows as the eddy field develops and transports both buoyant fluid from above the source region horizontally into the unheated sections of the tank and ambient fluid horizontally into the source region. Ventilation of the deep and relatively unstratified water beyond the thermocline is thus most likely to occur if the thermocline is penetrated before the eddy field becomes fully developed.
doi_str_mv 10.1016/0967-0637(94)00039-U
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18177137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>096706379400039U</els_id><sourcerecordid>6784555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-b889dedf0919add1f1e31def341ea40c97678c4f9b6943e65ece478b5bab65493</originalsourceid><addsrcrecordid>eNqFkU9PGzEQxa0KpIbAN-hhVVWoSF3wYK__XJCqiBQkJC7kbHntMTXa7FJ7kzbfHodEHHqA08zh995o3iPkC9BzoCAuqBaypoLJ75qfUUqZrhefyASU1DUF0Adk8oZ8Jkc5PxUIhKITMp8N_RrdGNfYbSqfyuyrZfyHvursBlP1mIa_4-8q9pWt0jDaMfaPP6o8prKFWLDQraI_JofBdhlP9nNKFvPrh9lNfXf_63b28652_PJyrFultEcfqAZtvYcAyMBjYBzQcuq0FFI5HnQrNGcoGnTIpWqb1rai4ZpNyenO9zkNf1aYR7OM2WHX2R6HVTagQEpg8mNQqEZxxgv49T_waVilvjxhQAuhhGC0QHwHuTTknDCY5xSXNm0MULOtwGzzNdt8jebmtQKzKLJve2-bne1Csr2L-U3LJJVN0UzJ1Q7Dktw6YjLZRewd-phKNcYP8f07L3Ajmeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196686630</pqid></control><display><type>article</type><title>Convectively driven mixed layer growth in a rotating, stratified fluid</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ivey, G.N. ; Taylor, J.R. ; Coates, M.J.</creator><creatorcontrib>Ivey, G.N. ; Taylor, J.R. ; Coates, M.J.</creatorcontrib><description>A laboratory experiment has been conducted to examine deep convective processes in a stratified ocean. For convenience, cooling at the ocean surface is modelled in the laboratory by heating from below. A convective mixed layer was generated by heating over the central portion of the base of a rotating, thermally stratified fluid. In addition to the convective forcing, the initial stratification could also be pre-conditioned by rotating a false bottom in the tank, thus generating a cyclonic or anticyclonic initial circulation in the tank as desired. Following the initiation of the buoyancy flux, a mixed layer forms above the buoyancy source and erodes the overlying thermal stratification. Initially confined by rotation, the growth of the mixed layer depth with time is described by a one-dimensional deepening law. The front separating the heated convecting fluid from the stratified, quiescent ambient fluid eventually becomes unstable, generating a field of baroclinic eddies. The rate of deepening of the mixed layer slows as the eddy field develops and transports both buoyant fluid from above the source region horizontally into the unheated sections of the tank and ambient fluid horizontally into the source region. Ventilation of the deep and relatively unstratified water beyond the thermocline is thus most likely to occur if the thermocline is penetrated before the eddy field becomes fully developed.</description><identifier>ISSN: 0967-0637</identifier><identifier>EISSN: 1879-0119</identifier><identifier>DOI: 10.1016/0967-0637(94)00039-U</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Dynamics of the ocean (upper and deep oceans) ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Marine ; Oceanography ; Oceans ; Physics of the oceans</subject><ispartof>Deep-sea research. Part I, Oceanographic research papers, 1995, Vol.42 (3), p.331-349</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Mar 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-b889dedf0919add1f1e31def341ea40c97678c4f9b6943e65ece478b5bab65493</citedby><cites>FETCH-LOGICAL-c422t-b889dedf0919add1f1e31def341ea40c97678c4f9b6943e65ece478b5bab65493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0967-0637(94)00039-U$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,4025,27928,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3707506$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivey, G.N.</creatorcontrib><creatorcontrib>Taylor, J.R.</creatorcontrib><creatorcontrib>Coates, M.J.</creatorcontrib><title>Convectively driven mixed layer growth in a rotating, stratified fluid</title><title>Deep-sea research. Part I, Oceanographic research papers</title><description>A laboratory experiment has been conducted to examine deep convective processes in a stratified ocean. For convenience, cooling at the ocean surface is modelled in the laboratory by heating from below. A convective mixed layer was generated by heating over the central portion of the base of a rotating, thermally stratified fluid. In addition to the convective forcing, the initial stratification could also be pre-conditioned by rotating a false bottom in the tank, thus generating a cyclonic or anticyclonic initial circulation in the tank as desired. Following the initiation of the buoyancy flux, a mixed layer forms above the buoyancy source and erodes the overlying thermal stratification. Initially confined by rotation, the growth of the mixed layer depth with time is described by a one-dimensional deepening law. The front separating the heated convecting fluid from the stratified, quiescent ambient fluid eventually becomes unstable, generating a field of baroclinic eddies. The rate of deepening of the mixed layer slows as the eddy field develops and transports both buoyant fluid from above the source region horizontally into the unheated sections of the tank and ambient fluid horizontally into the source region. Ventilation of the deep and relatively unstratified water beyond the thermocline is thus most likely to occur if the thermocline is penetrated before the eddy field becomes fully developed.</description><subject>Dynamics of the ocean (upper and deep oceans)</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Marine</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Physics of the oceans</subject><issn>0967-0637</issn><issn>1879-0119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkU9PGzEQxa0KpIbAN-hhVVWoSF3wYK__XJCqiBQkJC7kbHntMTXa7FJ7kzbfHodEHHqA08zh995o3iPkC9BzoCAuqBaypoLJ75qfUUqZrhefyASU1DUF0Adk8oZ8Jkc5PxUIhKITMp8N_RrdGNfYbSqfyuyrZfyHvursBlP1mIa_4-8q9pWt0jDaMfaPP6o8prKFWLDQraI_JofBdhlP9nNKFvPrh9lNfXf_63b28652_PJyrFultEcfqAZtvYcAyMBjYBzQcuq0FFI5HnQrNGcoGnTIpWqb1rai4ZpNyenO9zkNf1aYR7OM2WHX2R6HVTagQEpg8mNQqEZxxgv49T_waVilvjxhQAuhhGC0QHwHuTTknDCY5xSXNm0MULOtwGzzNdt8jebmtQKzKLJve2-bne1Csr2L-U3LJJVN0UzJ1Q7Dktw6YjLZRewd-phKNcYP8f07L3Ajmeo</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Ivey, G.N.</creator><creator>Taylor, J.R.</creator><creator>Coates, M.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>1995</creationdate><title>Convectively driven mixed layer growth in a rotating, stratified fluid</title><author>Ivey, G.N. ; Taylor, J.R. ; Coates, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-b889dedf0919add1f1e31def341ea40c97678c4f9b6943e65ece478b5bab65493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Dynamics of the ocean (upper and deep oceans)</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Marine</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Physics of the oceans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivey, G.N.</creatorcontrib><creatorcontrib>Taylor, J.R.</creatorcontrib><creatorcontrib>Coates, M.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Deep-sea research. Part I, Oceanographic research papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivey, G.N.</au><au>Taylor, J.R.</au><au>Coates, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convectively driven mixed layer growth in a rotating, stratified fluid</atitle><jtitle>Deep-sea research. Part I, Oceanographic research papers</jtitle><date>1995</date><risdate>1995</risdate><volume>42</volume><issue>3</issue><spage>331</spage><epage>349</epage><pages>331-349</pages><issn>0967-0637</issn><eissn>1879-0119</eissn><abstract>A laboratory experiment has been conducted to examine deep convective processes in a stratified ocean. For convenience, cooling at the ocean surface is modelled in the laboratory by heating from below. A convective mixed layer was generated by heating over the central portion of the base of a rotating, thermally stratified fluid. In addition to the convective forcing, the initial stratification could also be pre-conditioned by rotating a false bottom in the tank, thus generating a cyclonic or anticyclonic initial circulation in the tank as desired. Following the initiation of the buoyancy flux, a mixed layer forms above the buoyancy source and erodes the overlying thermal stratification. Initially confined by rotation, the growth of the mixed layer depth with time is described by a one-dimensional deepening law. The front separating the heated convecting fluid from the stratified, quiescent ambient fluid eventually becomes unstable, generating a field of baroclinic eddies. The rate of deepening of the mixed layer slows as the eddy field develops and transports both buoyant fluid from above the source region horizontally into the unheated sections of the tank and ambient fluid horizontally into the source region. Ventilation of the deep and relatively unstratified water beyond the thermocline is thus most likely to occur if the thermocline is penetrated before the eddy field becomes fully developed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0967-0637(94)00039-U</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-0637
ispartof Deep-sea research. Part I, Oceanographic research papers, 1995, Vol.42 (3), p.331-349
issn 0967-0637
1879-0119
language eng
recordid cdi_proquest_miscellaneous_18177137
source Elsevier ScienceDirect Journals Complete
subjects Dynamics of the ocean (upper and deep oceans)
Earth, ocean, space
Exact sciences and technology
External geophysics
Marine
Oceanography
Oceans
Physics of the oceans
title Convectively driven mixed layer growth in a rotating, stratified fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convectively%20driven%20mixed%20layer%20growth%20in%20a%20rotating,%20stratified%20fluid&rft.jtitle=Deep-sea%20research.%20Part%20I,%20Oceanographic%20research%20papers&rft.au=Ivey,%20G.N.&rft.date=1995&rft.volume=42&rft.issue=3&rft.spage=331&rft.epage=349&rft.pages=331-349&rft.issn=0967-0637&rft.eissn=1879-0119&rft_id=info:doi/10.1016/0967-0637(94)00039-U&rft_dat=%3Cproquest_cross%3E6784555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196686630&rft_id=info:pmid/&rft_els_id=096706379400039U&rfr_iscdi=true