Double-targeted polymersomes and liposomes for multiple barrier crossing

[Display omitted] In order to treat metastasis in the brain, drug delivery systems must overcome multiple physical barriers between the point of administration and the target, such as the Blood-brain barrier, that hinder their free access across them. Multiple targeting approaches arise as a promisi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2016-09, Vol.511 (2), p.946-956
Hauptverfasser: Sánchez-Purrà, M., Ramos, V., Petrenko, V.A., Torchilin, V.P., Borrós, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] In order to treat metastasis in the brain, drug delivery systems must overcome multiple physical barriers between the point of administration and the target, such as the Blood-brain barrier, that hinder their free access across them. Multiple targeting approaches arise as a promising alternative to this barrier and target certain tissues inside the brain at a time. Herein, two surface modification methods are presented to obtain dual-targeted vesicle-like carriers functionalized with an MCF-7-specific phage protein and a BBB-specific peptide, providing the system the ability to cross a BBB model, target breast cancer cells and deliver its payload. The aim of this study was to compare new designed polymersomes with liposomes, a well-established delivery vehicle, in terms of drug loading, targeting, release and tumor cell killing. The bilayer structure of both systems allowed the conjugation with different ligands both by insertion and covalent binding. Different behaviour was observed in release, uptake and tumor cell killing corresponding to differences in membrane permeability of both vehicles and type of targeting and ligands’ combination. Preliminary results showed that both formulations were able to cross the BBB monolayer without harming it, showing cytotoxic activity in the abluminal compartment.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2016.08.001