Time-varying coefficients models for recurrent event data when different varying coefficients admit different degrees of smoothness: application to heart disease modeling
We consider a class of semiparametric marginal rate models for analyzing recurrent event data. In these models, both time‐varying and time‐free effects are present, and the estimation of time‐varying effects may result in non‐smooth regression functions. A typical approach for avoiding this problem...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2016-10, Vol.35 (23), p.4166-4182 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4182 |
---|---|
container_issue | 23 |
container_start_page | 4166 |
container_title | Statistics in medicine |
container_volume | 35 |
creator | Eshaghi, Ehsan Baghishani, Hossein Shahsavani, Davood |
description | We consider a class of semiparametric marginal rate models for analyzing recurrent event data. In these models, both time‐varying and time‐free effects are present, and the estimation of time‐varying effects may result in non‐smooth regression functions. A typical approach for avoiding this problem and producing smooth functions is based on kernel methods. The traditional kernel‐based approach, however, assumes a common degree of smoothness for all time‐varying regression functions, which may result in suboptimal estimators if the functions have different levels of smoothness. In this paper, we extend the traditional approach by introducing different bandwidths for different regression functions. First, we establish the asymptotic properties of the suggested estimators. Next, we demonstrate the superiority of our proposed method using two finite‐sample simulation studies. Finally, we illustrate our methodology by analyzing a real‐world heart disease dataset. Copyright © 2016 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.6995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1817050708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1817050708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3875-ee870ad1fdb2693f41f8c81b5b19b837a857208abae60bfa421f4320274befb43</originalsourceid><addsrcrecordid>eNp1kc9u1DAQhy0EoktB4gmQJS5cUvwnjh1utIVSqS0SLerRcpJx1yWJF0_S0lfiKfGyS0EILh7J882n0fwIec7ZHmdMvMYw7FV1rR6QBWe1LphQ5iFZMKF1UWmudsgTxGvGOFdCPyY7QgtpWC0X5PtFGKC4cekujFe0jeB9aAOME9IhdtAj9THRBO2cUv6lcLN-Ozc5eruEkXbBe_jZ-afDdUOY_oA6uEoASKOnOMQ4LUdAfEPdatWH1k0hjnSKdAkuracQHMJmj2x-Sh551yM829Zd8vn9u4uDD8XJx6Pjg7cnRSuNVgWA0cx13HeNqGrpS-5Na3ijGl43RmpnlBbMuMZBxRrvSsF9KUW-VdmAb0q5S15tvKsUv86Akx0CttD3boQ4o-WGa6aYZiajL_9Cr-OcxrxdpoRgleAl_y1sU0RM4O0qhSGfy3Jm1_nZnJ9d55fRF1vh3AzQ3YO_AstAsQFuQw93_xXZ8-PTrXDLB5zg2z3v0hdbaamVvTw7sqefLs8O98-1PZQ_AOdet6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822062141</pqid></control><display><type>article</type><title>Time-varying coefficients models for recurrent event data when different varying coefficients admit different degrees of smoothness: application to heart disease modeling</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eshaghi, Ehsan ; Baghishani, Hossein ; Shahsavani, Davood</creator><creatorcontrib>Eshaghi, Ehsan ; Baghishani, Hossein ; Shahsavani, Davood</creatorcontrib><description>We consider a class of semiparametric marginal rate models for analyzing recurrent event data. In these models, both time‐varying and time‐free effects are present, and the estimation of time‐varying effects may result in non‐smooth regression functions. A typical approach for avoiding this problem and producing smooth functions is based on kernel methods. The traditional kernel‐based approach, however, assumes a common degree of smoothness for all time‐varying regression functions, which may result in suboptimal estimators if the functions have different levels of smoothness. In this paper, we extend the traditional approach by introducing different bandwidths for different regression functions. First, we establish the asymptotic properties of the suggested estimators. Next, we demonstrate the superiority of our proposed method using two finite‐sample simulation studies. Finally, we illustrate our methodology by analyzing a real‐world heart disease dataset. Copyright © 2016 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.6995</identifier><identifier>PMID: 27238093</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bandwidths ; Cardiovascular disease ; Computer Simulation ; consistency ; convergence rate ; different bandwidths ; Heart Diseases ; kernel function ; Medical statistics ; Models, Statistical ; recurrent event data ; Regression analysis ; semiparametric model ; Simulation</subject><ispartof>Statistics in medicine, 2016-10, Vol.35 (23), p.4166-4182</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Oct 15, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3875-ee870ad1fdb2693f41f8c81b5b19b837a857208abae60bfa421f4320274befb43</citedby><cites>FETCH-LOGICAL-c3875-ee870ad1fdb2693f41f8c81b5b19b837a857208abae60bfa421f4320274befb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.6995$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.6995$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27238093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eshaghi, Ehsan</creatorcontrib><creatorcontrib>Baghishani, Hossein</creatorcontrib><creatorcontrib>Shahsavani, Davood</creatorcontrib><title>Time-varying coefficients models for recurrent event data when different varying coefficients admit different degrees of smoothness: application to heart disease modeling</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>We consider a class of semiparametric marginal rate models for analyzing recurrent event data. In these models, both time‐varying and time‐free effects are present, and the estimation of time‐varying effects may result in non‐smooth regression functions. A typical approach for avoiding this problem and producing smooth functions is based on kernel methods. The traditional kernel‐based approach, however, assumes a common degree of smoothness for all time‐varying regression functions, which may result in suboptimal estimators if the functions have different levels of smoothness. In this paper, we extend the traditional approach by introducing different bandwidths for different regression functions. First, we establish the asymptotic properties of the suggested estimators. Next, we demonstrate the superiority of our proposed method using two finite‐sample simulation studies. Finally, we illustrate our methodology by analyzing a real‐world heart disease dataset. Copyright © 2016 John Wiley & Sons, Ltd.</description><subject>Bandwidths</subject><subject>Cardiovascular disease</subject><subject>Computer Simulation</subject><subject>consistency</subject><subject>convergence rate</subject><subject>different bandwidths</subject><subject>Heart Diseases</subject><subject>kernel function</subject><subject>Medical statistics</subject><subject>Models, Statistical</subject><subject>recurrent event data</subject><subject>Regression analysis</subject><subject>semiparametric model</subject><subject>Simulation</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9u1DAQhy0EoktB4gmQJS5cUvwnjh1utIVSqS0SLerRcpJx1yWJF0_S0lfiKfGyS0EILh7J882n0fwIec7ZHmdMvMYw7FV1rR6QBWe1LphQ5iFZMKF1UWmudsgTxGvGOFdCPyY7QgtpWC0X5PtFGKC4cekujFe0jeB9aAOME9IhdtAj9THRBO2cUv6lcLN-Ozc5eruEkXbBe_jZ-afDdUOY_oA6uEoASKOnOMQ4LUdAfEPdatWH1k0hjnSKdAkuracQHMJmj2x-Sh551yM829Zd8vn9u4uDD8XJx6Pjg7cnRSuNVgWA0cx13HeNqGrpS-5Na3ijGl43RmpnlBbMuMZBxRrvSsF9KUW-VdmAb0q5S15tvKsUv86Akx0CttD3boQ4o-WGa6aYZiajL_9Cr-OcxrxdpoRgleAl_y1sU0RM4O0qhSGfy3Jm1_nZnJ9d55fRF1vh3AzQ3YO_AstAsQFuQw93_xXZ8-PTrXDLB5zg2z3v0hdbaamVvTw7sqefLs8O98-1PZQ_AOdet6M</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Eshaghi, Ehsan</creator><creator>Baghishani, Hossein</creator><creator>Shahsavani, Davood</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20161015</creationdate><title>Time-varying coefficients models for recurrent event data when different varying coefficients admit different degrees of smoothness: application to heart disease modeling</title><author>Eshaghi, Ehsan ; Baghishani, Hossein ; Shahsavani, Davood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3875-ee870ad1fdb2693f41f8c81b5b19b837a857208abae60bfa421f4320274befb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bandwidths</topic><topic>Cardiovascular disease</topic><topic>Computer Simulation</topic><topic>consistency</topic><topic>convergence rate</topic><topic>different bandwidths</topic><topic>Heart Diseases</topic><topic>kernel function</topic><topic>Medical statistics</topic><topic>Models, Statistical</topic><topic>recurrent event data</topic><topic>Regression analysis</topic><topic>semiparametric model</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eshaghi, Ehsan</creatorcontrib><creatorcontrib>Baghishani, Hossein</creatorcontrib><creatorcontrib>Shahsavani, Davood</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eshaghi, Ehsan</au><au>Baghishani, Hossein</au><au>Shahsavani, Davood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-varying coefficients models for recurrent event data when different varying coefficients admit different degrees of smoothness: application to heart disease modeling</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2016-10-15</date><risdate>2016</risdate><volume>35</volume><issue>23</issue><spage>4166</spage><epage>4182</epage><pages>4166-4182</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>We consider a class of semiparametric marginal rate models for analyzing recurrent event data. In these models, both time‐varying and time‐free effects are present, and the estimation of time‐varying effects may result in non‐smooth regression functions. A typical approach for avoiding this problem and producing smooth functions is based on kernel methods. The traditional kernel‐based approach, however, assumes a common degree of smoothness for all time‐varying regression functions, which may result in suboptimal estimators if the functions have different levels of smoothness. In this paper, we extend the traditional approach by introducing different bandwidths for different regression functions. First, we establish the asymptotic properties of the suggested estimators. Next, we demonstrate the superiority of our proposed method using two finite‐sample simulation studies. Finally, we illustrate our methodology by analyzing a real‐world heart disease dataset. Copyright © 2016 John Wiley & Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27238093</pmid><doi>10.1002/sim.6995</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2016-10, Vol.35 (23), p.4166-4182 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_1817050708 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bandwidths Cardiovascular disease Computer Simulation consistency convergence rate different bandwidths Heart Diseases kernel function Medical statistics Models, Statistical recurrent event data Regression analysis semiparametric model Simulation |
title | Time-varying coefficients models for recurrent event data when different varying coefficients admit different degrees of smoothness: application to heart disease modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-varying%20coefficients%20models%20for%20recurrent%20event%20data%20when%20different%20varying%20coefficients%20admit%20different%20degrees%20of%20smoothness:%20application%20to%20heart%20disease%20modeling&rft.jtitle=Statistics%20in%20medicine&rft.au=Eshaghi,%20Ehsan&rft.date=2016-10-15&rft.volume=35&rft.issue=23&rft.spage=4166&rft.epage=4182&rft.pages=4166-4182&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.6995&rft_dat=%3Cproquest_cross%3E1817050708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822062141&rft_id=info:pmid/27238093&rfr_iscdi=true |