Time-varying coefficients models for recurrent event data when different varying coefficients admit different degrees of smoothness: application to heart disease modeling

We consider a class of semiparametric marginal rate models for analyzing recurrent event data. In these models, both time‐varying and time‐free effects are present, and the estimation of time‐varying effects may result in non‐smooth regression functions. A typical approach for avoiding this problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2016-10, Vol.35 (23), p.4166-4182
Hauptverfasser: Eshaghi, Ehsan, Baghishani, Hossein, Shahsavani, Davood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4182
container_issue 23
container_start_page 4166
container_title Statistics in medicine
container_volume 35
creator Eshaghi, Ehsan
Baghishani, Hossein
Shahsavani, Davood
description We consider a class of semiparametric marginal rate models for analyzing recurrent event data. In these models, both time‐varying and time‐free effects are present, and the estimation of time‐varying effects may result in non‐smooth regression functions. A typical approach for avoiding this problem and producing smooth functions is based on kernel methods. The traditional kernel‐based approach, however, assumes a common degree of smoothness for all time‐varying regression functions, which may result in suboptimal estimators if the functions have different levels of smoothness. In this paper, we extend the traditional approach by introducing different bandwidths for different regression functions. First, we establish the asymptotic properties of the suggested estimators. Next, we demonstrate the superiority of our proposed method using two finite‐sample simulation studies. Finally, we illustrate our methodology by analyzing a real‐world heart disease dataset. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.6995
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1817050708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1817050708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3875-ee870ad1fdb2693f41f8c81b5b19b837a857208abae60bfa421f4320274befb43</originalsourceid><addsrcrecordid>eNp1kc9u1DAQhy0EoktB4gmQJS5cUvwnjh1utIVSqS0SLerRcpJx1yWJF0_S0lfiKfGyS0EILh7J882n0fwIec7ZHmdMvMYw7FV1rR6QBWe1LphQ5iFZMKF1UWmudsgTxGvGOFdCPyY7QgtpWC0X5PtFGKC4cekujFe0jeB9aAOME9IhdtAj9THRBO2cUv6lcLN-Ozc5eruEkXbBe_jZ-afDdUOY_oA6uEoASKOnOMQ4LUdAfEPdatWH1k0hjnSKdAkuracQHMJmj2x-Sh551yM829Zd8vn9u4uDD8XJx6Pjg7cnRSuNVgWA0cx13HeNqGrpS-5Na3ijGl43RmpnlBbMuMZBxRrvSsF9KUW-VdmAb0q5S15tvKsUv86Akx0CttD3boQ4o-WGa6aYZiajL_9Cr-OcxrxdpoRgleAl_y1sU0RM4O0qhSGfy3Jm1_nZnJ9d55fRF1vh3AzQ3YO_AstAsQFuQw93_xXZ8-PTrXDLB5zg2z3v0hdbaamVvTw7sqefLs8O98-1PZQ_AOdet6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822062141</pqid></control><display><type>article</type><title>Time-varying coefficients models for recurrent event data when different varying coefficients admit different degrees of smoothness: application to heart disease modeling</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eshaghi, Ehsan ; Baghishani, Hossein ; Shahsavani, Davood</creator><creatorcontrib>Eshaghi, Ehsan ; Baghishani, Hossein ; Shahsavani, Davood</creatorcontrib><description>We consider a class of semiparametric marginal rate models for analyzing recurrent event data. In these models, both time‐varying and time‐free effects are present, and the estimation of time‐varying effects may result in non‐smooth regression functions. A typical approach for avoiding this problem and producing smooth functions is based on kernel methods. The traditional kernel‐based approach, however, assumes a common degree of smoothness for all time‐varying regression functions, which may result in suboptimal estimators if the functions have different levels of smoothness. In this paper, we extend the traditional approach by introducing different bandwidths for different regression functions. First, we establish the asymptotic properties of the suggested estimators. Next, we demonstrate the superiority of our proposed method using two finite‐sample simulation studies. Finally, we illustrate our methodology by analyzing a real‐world heart disease dataset. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.6995</identifier><identifier>PMID: 27238093</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bandwidths ; Cardiovascular disease ; Computer Simulation ; consistency ; convergence rate ; different bandwidths ; Heart Diseases ; kernel function ; Medical statistics ; Models, Statistical ; recurrent event data ; Regression analysis ; semiparametric model ; Simulation</subject><ispartof>Statistics in medicine, 2016-10, Vol.35 (23), p.4166-4182</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Oct 15, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3875-ee870ad1fdb2693f41f8c81b5b19b837a857208abae60bfa421f4320274befb43</citedby><cites>FETCH-LOGICAL-c3875-ee870ad1fdb2693f41f8c81b5b19b837a857208abae60bfa421f4320274befb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.6995$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.6995$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27238093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eshaghi, Ehsan</creatorcontrib><creatorcontrib>Baghishani, Hossein</creatorcontrib><creatorcontrib>Shahsavani, Davood</creatorcontrib><title>Time-varying coefficients models for recurrent event data when different varying coefficients admit different degrees of smoothness: application to heart disease modeling</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>We consider a class of semiparametric marginal rate models for analyzing recurrent event data. In these models, both time‐varying and time‐free effects are present, and the estimation of time‐varying effects may result in non‐smooth regression functions. A typical approach for avoiding this problem and producing smooth functions is based on kernel methods. The traditional kernel‐based approach, however, assumes a common degree of smoothness for all time‐varying regression functions, which may result in suboptimal estimators if the functions have different levels of smoothness. In this paper, we extend the traditional approach by introducing different bandwidths for different regression functions. First, we establish the asymptotic properties of the suggested estimators. Next, we demonstrate the superiority of our proposed method using two finite‐sample simulation studies. Finally, we illustrate our methodology by analyzing a real‐world heart disease dataset. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>Bandwidths</subject><subject>Cardiovascular disease</subject><subject>Computer Simulation</subject><subject>consistency</subject><subject>convergence rate</subject><subject>different bandwidths</subject><subject>Heart Diseases</subject><subject>kernel function</subject><subject>Medical statistics</subject><subject>Models, Statistical</subject><subject>recurrent event data</subject><subject>Regression analysis</subject><subject>semiparametric model</subject><subject>Simulation</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9u1DAQhy0EoktB4gmQJS5cUvwnjh1utIVSqS0SLerRcpJx1yWJF0_S0lfiKfGyS0EILh7J882n0fwIec7ZHmdMvMYw7FV1rR6QBWe1LphQ5iFZMKF1UWmudsgTxGvGOFdCPyY7QgtpWC0X5PtFGKC4cekujFe0jeB9aAOME9IhdtAj9THRBO2cUv6lcLN-Ozc5eruEkXbBe_jZ-afDdUOY_oA6uEoASKOnOMQ4LUdAfEPdatWH1k0hjnSKdAkuracQHMJmj2x-Sh551yM829Zd8vn9u4uDD8XJx6Pjg7cnRSuNVgWA0cx13HeNqGrpS-5Na3ijGl43RmpnlBbMuMZBxRrvSsF9KUW-VdmAb0q5S15tvKsUv86Akx0CttD3boQ4o-WGa6aYZiajL_9Cr-OcxrxdpoRgleAl_y1sU0RM4O0qhSGfy3Jm1_nZnJ9d55fRF1vh3AzQ3YO_AstAsQFuQw93_xXZ8-PTrXDLB5zg2z3v0hdbaamVvTw7sqefLs8O98-1PZQ_AOdet6M</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Eshaghi, Ehsan</creator><creator>Baghishani, Hossein</creator><creator>Shahsavani, Davood</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20161015</creationdate><title>Time-varying coefficients models for recurrent event data when different varying coefficients admit different degrees of smoothness: application to heart disease modeling</title><author>Eshaghi, Ehsan ; Baghishani, Hossein ; Shahsavani, Davood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3875-ee870ad1fdb2693f41f8c81b5b19b837a857208abae60bfa421f4320274befb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bandwidths</topic><topic>Cardiovascular disease</topic><topic>Computer Simulation</topic><topic>consistency</topic><topic>convergence rate</topic><topic>different bandwidths</topic><topic>Heart Diseases</topic><topic>kernel function</topic><topic>Medical statistics</topic><topic>Models, Statistical</topic><topic>recurrent event data</topic><topic>Regression analysis</topic><topic>semiparametric model</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eshaghi, Ehsan</creatorcontrib><creatorcontrib>Baghishani, Hossein</creatorcontrib><creatorcontrib>Shahsavani, Davood</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eshaghi, Ehsan</au><au>Baghishani, Hossein</au><au>Shahsavani, Davood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-varying coefficients models for recurrent event data when different varying coefficients admit different degrees of smoothness: application to heart disease modeling</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2016-10-15</date><risdate>2016</risdate><volume>35</volume><issue>23</issue><spage>4166</spage><epage>4182</epage><pages>4166-4182</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>We consider a class of semiparametric marginal rate models for analyzing recurrent event data. In these models, both time‐varying and time‐free effects are present, and the estimation of time‐varying effects may result in non‐smooth regression functions. A typical approach for avoiding this problem and producing smooth functions is based on kernel methods. The traditional kernel‐based approach, however, assumes a common degree of smoothness for all time‐varying regression functions, which may result in suboptimal estimators if the functions have different levels of smoothness. In this paper, we extend the traditional approach by introducing different bandwidths for different regression functions. First, we establish the asymptotic properties of the suggested estimators. Next, we demonstrate the superiority of our proposed method using two finite‐sample simulation studies. Finally, we illustrate our methodology by analyzing a real‐world heart disease dataset. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27238093</pmid><doi>10.1002/sim.6995</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2016-10, Vol.35 (23), p.4166-4182
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_1817050708
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bandwidths
Cardiovascular disease
Computer Simulation
consistency
convergence rate
different bandwidths
Heart Diseases
kernel function
Medical statistics
Models, Statistical
recurrent event data
Regression analysis
semiparametric model
Simulation
title Time-varying coefficients models for recurrent event data when different varying coefficients admit different degrees of smoothness: application to heart disease modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-varying%20coefficients%20models%20for%20recurrent%20event%20data%20when%20different%20varying%20coefficients%20admit%20different%20degrees%20of%20smoothness:%20application%20to%20heart%20disease%20modeling&rft.jtitle=Statistics%20in%20medicine&rft.au=Eshaghi,%20Ehsan&rft.date=2016-10-15&rft.volume=35&rft.issue=23&rft.spage=4166&rft.epage=4182&rft.pages=4166-4182&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.6995&rft_dat=%3Cproquest_cross%3E1817050708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822062141&rft_id=info:pmid/27238093&rfr_iscdi=true