In situ water vapour measurement, and a case study of the drying mechanism of the tropical lower stratosphere

During an experiment performed in tropical regions, water vapour content was measured in the lower stratosphere, using long duration balloons. A set of profiles show a vertical structure consistent with what has been named the tape‐recorder effect. One of the results, when the balloon descends to 10...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society 1996-07, Vol.122 (534), p.1447-1458
Hauptverfasser: Ovarlez, Joëlle, Ovarlez, Henri, Teitelbaum, Hector
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1458
container_issue 534
container_start_page 1447
container_title Quarterly journal of the Royal Meteorological Society
container_volume 122
creator Ovarlez, Joëlle
Ovarlez, Henri
Teitelbaum, Hector
description During an experiment performed in tropical regions, water vapour content was measured in the lower stratosphere, using long duration balloons. A set of profiles show a vertical structure consistent with what has been named the tape‐recorder effect. One of the results, when the balloon descends to 100 hPa, shows a value of the water‐vapour mixing ratio as low as 2.8 parts per million by volume, in a layer approximately 1 km thick at about 80 hPa. This layer is delimited by two minima of air temperature, suggesting that the drying is a consequence of a vigorous convective process. This kind of process can be so strong that the convective cloud overshoots the tropopause and forms an anvil of ice crystals which grow and finally fall under gravity. Some of the characteristics of the METEOSAT cloud imagery and of the ECMWF analyses could be interpreted as the signature of this type of convective process. Nevertheless one cannot discard other mechanisms, such as the generation of stratospheric buoyancy waves by tropical convection. These waves can cross the tropopause and form thin ice clouds in the lower stratosphere. In this hypothesis, also, the ice falls and transports moisture downwards.
doi_str_mv 10.1002/qj.49712253410
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18170218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18170218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1940-6089316733aac3ba80f861ca7219b594e89374cad6aea8eb187b7412ad51d84a3</originalsourceid><addsrcrecordid>eNqFkE1r3EAMhofSQrdJrz3PofRUbyWPvTNzLKEfKYESaCA3ox3LXS_-2tE4y_77umxacstJID16hF6l3iGsESD_dNivC28xz0tTILxQKyyszZyF-5dqBWDKzAP41-qNyB4ASpvbleqvBy1tmvWREkf9QNM4R90zyRy55yF91DTUmnQgYS1prk96bHTasa7jqR1-L2zY0dBK_6-f4ji1gTrdjcdFKSlSGmXaceRL9aqhTvjtY71Qd1-__Lr6nt38_HZ99fkmC-gLyDbgvMGNNYYomC05aNwGA9kc_bb0BS9jWwSqN8TkeIvObm2BOdUl1q4gc6E-nL1THA8zS6r6VgJ3HQ08zlKhQws5ugVcn8EQR5HITTXFtqd4qhCqv6lWh331JNVl4f2jmWT5sYk0hFb-bxn0Zgl5wfwZO7Ydn56RVrc_np74A8rWiJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18170218</pqid></control><display><type>article</type><title>In situ water vapour measurement, and a case study of the drying mechanism of the tropical lower stratosphere</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ovarlez, Joëlle ; Ovarlez, Henri ; Teitelbaum, Hector</creator><creatorcontrib>Ovarlez, Joëlle ; Ovarlez, Henri ; Teitelbaum, Hector</creatorcontrib><description>During an experiment performed in tropical regions, water vapour content was measured in the lower stratosphere, using long duration balloons. A set of profiles show a vertical structure consistent with what has been named the tape‐recorder effect. One of the results, when the balloon descends to 100 hPa, shows a value of the water‐vapour mixing ratio as low as 2.8 parts per million by volume, in a layer approximately 1 km thick at about 80 hPa. This layer is delimited by two minima of air temperature, suggesting that the drying is a consequence of a vigorous convective process. This kind of process can be so strong that the convective cloud overshoots the tropopause and forms an anvil of ice crystals which grow and finally fall under gravity. Some of the characteristics of the METEOSAT cloud imagery and of the ECMWF analyses could be interpreted as the signature of this type of convective process. Nevertheless one cannot discard other mechanisms, such as the generation of stratospheric buoyancy waves by tropical convection. These waves can cross the tropopause and form thin ice clouds in the lower stratosphere. In this hypothesis, also, the ice falls and transports moisture downwards.</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.49712253410</identifier><identifier>CODEN: QJRMAM</identifier><language>eng</language><publisher>Bracknell: John Wiley &amp; Sons, Ltd</publisher><subject>Anvil clouds ; Atmospheric composition. Chemical and photochemical reactions ; Convection ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Montgolfière balloons ; Physics of the high neutral atmosphere ; Stratospheric dehydration ; Troposphere–stratosphere interaction ; ‘Tape‐recorder’ effect</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 1996-07, Vol.122 (534), p.1447-1458</ispartof><rights>Copyright © 1996 Royal Meteorological Society</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1940-6089316733aac3ba80f861ca7219b594e89374cad6aea8eb187b7412ad51d84a3</citedby><cites>FETCH-LOGICAL-c1940-6089316733aac3ba80f861ca7219b594e89374cad6aea8eb187b7412ad51d84a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.49712253410$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.49712253410$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3193009$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ovarlez, Joëlle</creatorcontrib><creatorcontrib>Ovarlez, Henri</creatorcontrib><creatorcontrib>Teitelbaum, Hector</creatorcontrib><title>In situ water vapour measurement, and a case study of the drying mechanism of the tropical lower stratosphere</title><title>Quarterly journal of the Royal Meteorological Society</title><description>During an experiment performed in tropical regions, water vapour content was measured in the lower stratosphere, using long duration balloons. A set of profiles show a vertical structure consistent with what has been named the tape‐recorder effect. One of the results, when the balloon descends to 100 hPa, shows a value of the water‐vapour mixing ratio as low as 2.8 parts per million by volume, in a layer approximately 1 km thick at about 80 hPa. This layer is delimited by two minima of air temperature, suggesting that the drying is a consequence of a vigorous convective process. This kind of process can be so strong that the convective cloud overshoots the tropopause and forms an anvil of ice crystals which grow and finally fall under gravity. Some of the characteristics of the METEOSAT cloud imagery and of the ECMWF analyses could be interpreted as the signature of this type of convective process. Nevertheless one cannot discard other mechanisms, such as the generation of stratospheric buoyancy waves by tropical convection. These waves can cross the tropopause and form thin ice clouds in the lower stratosphere. In this hypothesis, also, the ice falls and transports moisture downwards.</description><subject>Anvil clouds</subject><subject>Atmospheric composition. Chemical and photochemical reactions</subject><subject>Convection</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Montgolfière balloons</subject><subject>Physics of the high neutral atmosphere</subject><subject>Stratospheric dehydration</subject><subject>Troposphere–stratosphere interaction</subject><subject>‘Tape‐recorder’ effect</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3EAMhofSQrdJrz3PofRUbyWPvTNzLKEfKYESaCA3ox3LXS_-2tE4y_77umxacstJID16hF6l3iGsESD_dNivC28xz0tTILxQKyyszZyF-5dqBWDKzAP41-qNyB4ASpvbleqvBy1tmvWREkf9QNM4R90zyRy55yF91DTUmnQgYS1prk96bHTasa7jqR1-L2zY0dBK_6-f4ji1gTrdjcdFKSlSGmXaceRL9aqhTvjtY71Qd1-__Lr6nt38_HZ99fkmC-gLyDbgvMGNNYYomC05aNwGA9kc_bb0BS9jWwSqN8TkeIvObm2BOdUl1q4gc6E-nL1THA8zS6r6VgJ3HQ08zlKhQws5ugVcn8EQR5HITTXFtqd4qhCqv6lWh331JNVl4f2jmWT5sYk0hFb-bxn0Zgl5wfwZO7Ydn56RVrc_np74A8rWiJw</recordid><startdate>199607</startdate><enddate>199607</enddate><creator>Ovarlez, Joëlle</creator><creator>Ovarlez, Henri</creator><creator>Teitelbaum, Hector</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>199607</creationdate><title>In situ water vapour measurement, and a case study of the drying mechanism of the tropical lower stratosphere</title><author>Ovarlez, Joëlle ; Ovarlez, Henri ; Teitelbaum, Hector</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1940-6089316733aac3ba80f861ca7219b594e89374cad6aea8eb187b7412ad51d84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Anvil clouds</topic><topic>Atmospheric composition. Chemical and photochemical reactions</topic><topic>Convection</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Montgolfière balloons</topic><topic>Physics of the high neutral atmosphere</topic><topic>Stratospheric dehydration</topic><topic>Troposphere–stratosphere interaction</topic><topic>‘Tape‐recorder’ effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovarlez, Joëlle</creatorcontrib><creatorcontrib>Ovarlez, Henri</creatorcontrib><creatorcontrib>Teitelbaum, Hector</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovarlez, Joëlle</au><au>Ovarlez, Henri</au><au>Teitelbaum, Hector</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ water vapour measurement, and a case study of the drying mechanism of the tropical lower stratosphere</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>1996-07</date><risdate>1996</risdate><volume>122</volume><issue>534</issue><spage>1447</spage><epage>1458</epage><pages>1447-1458</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><coden>QJRMAM</coden><abstract>During an experiment performed in tropical regions, water vapour content was measured in the lower stratosphere, using long duration balloons. A set of profiles show a vertical structure consistent with what has been named the tape‐recorder effect. One of the results, when the balloon descends to 100 hPa, shows a value of the water‐vapour mixing ratio as low as 2.8 parts per million by volume, in a layer approximately 1 km thick at about 80 hPa. This layer is delimited by two minima of air temperature, suggesting that the drying is a consequence of a vigorous convective process. This kind of process can be so strong that the convective cloud overshoots the tropopause and forms an anvil of ice crystals which grow and finally fall under gravity. Some of the characteristics of the METEOSAT cloud imagery and of the ECMWF analyses could be interpreted as the signature of this type of convective process. Nevertheless one cannot discard other mechanisms, such as the generation of stratospheric buoyancy waves by tropical convection. These waves can cross the tropopause and form thin ice clouds in the lower stratosphere. In this hypothesis, also, the ice falls and transports moisture downwards.</abstract><cop>Bracknell</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/qj.49712253410</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9009
ispartof Quarterly journal of the Royal Meteorological Society, 1996-07, Vol.122 (534), p.1447-1458
issn 0035-9009
1477-870X
language eng
recordid cdi_proquest_miscellaneous_18170218
source Wiley Online Library Journals Frontfile Complete
subjects Anvil clouds
Atmospheric composition. Chemical and photochemical reactions
Convection
Earth, ocean, space
Exact sciences and technology
External geophysics
Montgolfière balloons
Physics of the high neutral atmosphere
Stratospheric dehydration
Troposphere–stratosphere interaction
‘Tape‐recorder’ effect
title In situ water vapour measurement, and a case study of the drying mechanism of the tropical lower stratosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20water%20vapour%20measurement,%20and%20a%20case%20study%20of%20the%20drying%20mechanism%20of%20the%20tropical%20lower%20stratosphere&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Ovarlez,%20Jo%C3%ABlle&rft.date=1996-07&rft.volume=122&rft.issue=534&rft.spage=1447&rft.epage=1458&rft.pages=1447-1458&rft.issn=0035-9009&rft.eissn=1477-870X&rft.coden=QJRMAM&rft_id=info:doi/10.1002/qj.49712253410&rft_dat=%3Cproquest_cross%3E18170218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18170218&rft_id=info:pmid/&rfr_iscdi=true