Modelling the soil‐plant‐atmosphere continuum in a Quercus–Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties

ABSTRACT Our objective is to describe a multi‐layer model of C3‐canopy processes that effectively simulates hourly CO2 and latent energy (LE) fluxes in a mixed deciduous Quercus‐Acer (oak–maple) stand in central Massachusetts, USA. The key hypothesis governing the biological component of the model i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 1996-08, Vol.19 (8), p.911-927
Hauptverfasser: WILLIAMS, M., RASTETTER, E. B., FERNANDES, D. N., GOULDEN, M. L., WOFSY, S. C., SHAVER, G. R., MELILLO, J. M., MUNGER, J. W., FAN, S.‐M., NADELHOFFER, K. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 927
container_issue 8
container_start_page 911
container_title Plant, cell and environment
container_volume 19
creator WILLIAMS, M.
RASTETTER, E. B.
FERNANDES, D. N.
GOULDEN, M. L.
WOFSY, S. C.
SHAVER, G. R.
MELILLO, J. M.
MUNGER, J. W.
FAN, S.‐M.
NADELHOFFER, K. J.
description ABSTRACT Our objective is to describe a multi‐layer model of C3‐canopy processes that effectively simulates hourly CO2 and latent energy (LE) fluxes in a mixed deciduous Quercus‐Acer (oak–maple) stand in central Massachusetts, USA. The key hypothesis governing the biological component of the model is that stomatal conductance (gs) is varied so that daily carbon uptake per unit of foliar nitrogen is maximized within the limitations of canopy water availability. The hydraulic system is modelled as an analogue to simple electrical circuits in parallel, including a separate soil hydraulic resistance, plant resistance and plant capacitance for each canopy layer. Stomatal opening is initially controlled to conserve plant water stores and delay the onset of water stress. Stomatal closure at a threshold minimum leaf water potential prevents xylem cavitation and controls the maximum rate of water flux through the hydraulic system. We show a strong correlation between predicted hourly CO2 exchange rate (r2= 0.86) and LE (r2= 0.87) with independent whole‐forest measurements made by the eddy correlation method during the summer of 1992. Our theoretical derivation shows that observed relationships between CO2 assimilation and LE flux can be explained on the basis of stomatal behaviour optimizing carbon gain, and provides an explicit link between canopy structure, soil properties, atmospheric conditions and stomatal conductance.
doi_str_mv 10.1111/j.1365-3040.1996.tb00456.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18163085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16038633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4611-1ccd5051787fa2393f251332dbc1b70e76b55121a50fcf7394d8e8fb28711003</originalsourceid><addsrcrecordid>eNqVUc1u1DAQthBILAvvYCHEiWw9cRInPSBVq5YiFQFS75bjOLteOXHwT-ne-ghIvE6fpk9Sp7vqFTGXkWa--b6Z-RB6D2QFKU52K6BVmVFSpELTVKvQElKU1er2BVo8t16iBYGCZIw18Bq98X5HSCqwZoHuv9lOGaPHDQ5bhb3V5uHuz2TEGFIWYbB-2iqnsLRj0GOMA9YjFvhnVE5G_3D390wqh30QY4dFwJfC3QjX4QvrlA-nT6RObaIRQdsR2z5B7SCCMDNjF2UalAq3e2z0Zhs-4VEHZzcqaSTCeZ2Tp2Xwdt85EY2WeHJ2Ui5o5d-iV70wXr075iW6vji_Xl9mV9-_fF2fXWWyqAAykLIrSQmsZr3IaUP7vARK866V0DKiWNWWJeQgStLLntGm6GpV921eMwBC6BJ9PNAm5V8xncUH7WX6mhiVjZ5DDRUldflvYEVoXVGagKcHoHTWe6d6Pjk9CLfnQPhsLN_x2T0-u8dnY_nRWH6bhj8cVYSXwvQufVD7ZwYKjJF05BJ9PsB-a6P2_yHAf6zPGwD6CA3Pvqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16038633</pqid></control><display><type>article</type><title>Modelling the soil‐plant‐atmosphere continuum in a Quercus–Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>WILLIAMS, M. ; RASTETTER, E. B. ; FERNANDES, D. N. ; GOULDEN, M. L. ; WOFSY, S. C. ; SHAVER, G. R. ; MELILLO, J. M. ; MUNGER, J. W. ; FAN, S.‐M. ; NADELHOFFER, K. J.</creator><creatorcontrib>WILLIAMS, M. ; RASTETTER, E. B. ; FERNANDES, D. N. ; GOULDEN, M. L. ; WOFSY, S. C. ; SHAVER, G. R. ; MELILLO, J. M. ; MUNGER, J. W. ; FAN, S.‐M. ; NADELHOFFER, K. J.</creatorcontrib><description>ABSTRACT Our objective is to describe a multi‐layer model of C3‐canopy processes that effectively simulates hourly CO2 and latent energy (LE) fluxes in a mixed deciduous Quercus‐Acer (oak–maple) stand in central Massachusetts, USA. The key hypothesis governing the biological component of the model is that stomatal conductance (gs) is varied so that daily carbon uptake per unit of foliar nitrogen is maximized within the limitations of canopy water availability. The hydraulic system is modelled as an analogue to simple electrical circuits in parallel, including a separate soil hydraulic resistance, plant resistance and plant capacitance for each canopy layer. Stomatal opening is initially controlled to conserve plant water stores and delay the onset of water stress. Stomatal closure at a threshold minimum leaf water potential prevents xylem cavitation and controls the maximum rate of water flux through the hydraulic system. We show a strong correlation between predicted hourly CO2 exchange rate (r2= 0.86) and LE (r2= 0.87) with independent whole‐forest measurements made by the eddy correlation method during the summer of 1992. Our theoretical derivation shows that observed relationships between CO2 assimilation and LE flux can be explained on the basis of stomatal behaviour optimizing carbon gain, and provides an explicit link between canopy structure, soil properties, atmospheric conditions and stomatal conductance.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/j.1365-3040.1996.tb00456.x</identifier><identifier>CODEN: PLCEDV</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acer rubrum ; Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; photosynthesis ; plant hydraulic conductance ; Quercus rubra ; soil‐plant‐atmosphere continuum model ; stomatal conductance ; Synecology ; Terrestrial ecosystems</subject><ispartof>Plant, cell and environment, 1996-08, Vol.19 (8), p.911-927</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4611-1ccd5051787fa2393f251332dbc1b70e76b55121a50fcf7394d8e8fb28711003</citedby><cites>FETCH-LOGICAL-c4611-1ccd5051787fa2393f251332dbc1b70e76b55121a50fcf7394d8e8fb28711003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-3040.1996.tb00456.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-3040.1996.tb00456.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3177039$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WILLIAMS, M.</creatorcontrib><creatorcontrib>RASTETTER, E. B.</creatorcontrib><creatorcontrib>FERNANDES, D. N.</creatorcontrib><creatorcontrib>GOULDEN, M. L.</creatorcontrib><creatorcontrib>WOFSY, S. C.</creatorcontrib><creatorcontrib>SHAVER, G. R.</creatorcontrib><creatorcontrib>MELILLO, J. M.</creatorcontrib><creatorcontrib>MUNGER, J. W.</creatorcontrib><creatorcontrib>FAN, S.‐M.</creatorcontrib><creatorcontrib>NADELHOFFER, K. J.</creatorcontrib><title>Modelling the soil‐plant‐atmosphere continuum in a Quercus–Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties</title><title>Plant, cell and environment</title><description>ABSTRACT Our objective is to describe a multi‐layer model of C3‐canopy processes that effectively simulates hourly CO2 and latent energy (LE) fluxes in a mixed deciduous Quercus‐Acer (oak–maple) stand in central Massachusetts, USA. The key hypothesis governing the biological component of the model is that stomatal conductance (gs) is varied so that daily carbon uptake per unit of foliar nitrogen is maximized within the limitations of canopy water availability. The hydraulic system is modelled as an analogue to simple electrical circuits in parallel, including a separate soil hydraulic resistance, plant resistance and plant capacitance for each canopy layer. Stomatal opening is initially controlled to conserve plant water stores and delay the onset of water stress. Stomatal closure at a threshold minimum leaf water potential prevents xylem cavitation and controls the maximum rate of water flux through the hydraulic system. We show a strong correlation between predicted hourly CO2 exchange rate (r2= 0.86) and LE (r2= 0.87) with independent whole‐forest measurements made by the eddy correlation method during the summer of 1992. Our theoretical derivation shows that observed relationships between CO2 assimilation and LE flux can be explained on the basis of stomatal behaviour optimizing carbon gain, and provides an explicit link between canopy structure, soil properties, atmospheric conditions and stomatal conductance.</description><subject>Acer rubrum</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>photosynthesis</subject><subject>plant hydraulic conductance</subject><subject>Quercus rubra</subject><subject>soil‐plant‐atmosphere continuum model</subject><subject>stomatal conductance</subject><subject>Synecology</subject><subject>Terrestrial ecosystems</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqVUc1u1DAQthBILAvvYCHEiWw9cRInPSBVq5YiFQFS75bjOLteOXHwT-ne-ghIvE6fpk9Sp7vqFTGXkWa--b6Z-RB6D2QFKU52K6BVmVFSpELTVKvQElKU1er2BVo8t16iBYGCZIw18Bq98X5HSCqwZoHuv9lOGaPHDQ5bhb3V5uHuz2TEGFIWYbB-2iqnsLRj0GOMA9YjFvhnVE5G_3D390wqh30QY4dFwJfC3QjX4QvrlA-nT6RObaIRQdsR2z5B7SCCMDNjF2UalAq3e2z0Zhs-4VEHZzcqaSTCeZ2Tp2Xwdt85EY2WeHJ2Ui5o5d-iV70wXr075iW6vji_Xl9mV9-_fF2fXWWyqAAykLIrSQmsZr3IaUP7vARK866V0DKiWNWWJeQgStLLntGm6GpV921eMwBC6BJ9PNAm5V8xncUH7WX6mhiVjZ5DDRUldflvYEVoXVGagKcHoHTWe6d6Pjk9CLfnQPhsLN_x2T0-u8dnY_nRWH6bhj8cVYSXwvQufVD7ZwYKjJF05BJ9PsB-a6P2_yHAf6zPGwD6CA3Pvqc</recordid><startdate>199608</startdate><enddate>199608</enddate><creator>WILLIAMS, M.</creator><creator>RASTETTER, E. B.</creator><creator>FERNANDES, D. N.</creator><creator>GOULDEN, M. L.</creator><creator>WOFSY, S. C.</creator><creator>SHAVER, G. R.</creator><creator>MELILLO, J. M.</creator><creator>MUNGER, J. W.</creator><creator>FAN, S.‐M.</creator><creator>NADELHOFFER, K. J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>199608</creationdate><title>Modelling the soil‐plant‐atmosphere continuum in a Quercus–Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties</title><author>WILLIAMS, M. ; RASTETTER, E. B. ; FERNANDES, D. N. ; GOULDEN, M. L. ; WOFSY, S. C. ; SHAVER, G. R. ; MELILLO, J. M. ; MUNGER, J. W. ; FAN, S.‐M. ; NADELHOFFER, K. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4611-1ccd5051787fa2393f251332dbc1b70e76b55121a50fcf7394d8e8fb28711003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Acer rubrum</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>photosynthesis</topic><topic>plant hydraulic conductance</topic><topic>Quercus rubra</topic><topic>soil‐plant‐atmosphere continuum model</topic><topic>stomatal conductance</topic><topic>Synecology</topic><topic>Terrestrial ecosystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WILLIAMS, M.</creatorcontrib><creatorcontrib>RASTETTER, E. B.</creatorcontrib><creatorcontrib>FERNANDES, D. N.</creatorcontrib><creatorcontrib>GOULDEN, M. L.</creatorcontrib><creatorcontrib>WOFSY, S. C.</creatorcontrib><creatorcontrib>SHAVER, G. R.</creatorcontrib><creatorcontrib>MELILLO, J. M.</creatorcontrib><creatorcontrib>MUNGER, J. W.</creatorcontrib><creatorcontrib>FAN, S.‐M.</creatorcontrib><creatorcontrib>NADELHOFFER, K. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WILLIAMS, M.</au><au>RASTETTER, E. B.</au><au>FERNANDES, D. N.</au><au>GOULDEN, M. L.</au><au>WOFSY, S. C.</au><au>SHAVER, G. R.</au><au>MELILLO, J. M.</au><au>MUNGER, J. W.</au><au>FAN, S.‐M.</au><au>NADELHOFFER, K. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the soil‐plant‐atmosphere continuum in a Quercus–Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties</atitle><jtitle>Plant, cell and environment</jtitle><date>1996-08</date><risdate>1996</risdate><volume>19</volume><issue>8</issue><spage>911</spage><epage>927</epage><pages>911-927</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><coden>PLCEDV</coden><abstract>ABSTRACT Our objective is to describe a multi‐layer model of C3‐canopy processes that effectively simulates hourly CO2 and latent energy (LE) fluxes in a mixed deciduous Quercus‐Acer (oak–maple) stand in central Massachusetts, USA. The key hypothesis governing the biological component of the model is that stomatal conductance (gs) is varied so that daily carbon uptake per unit of foliar nitrogen is maximized within the limitations of canopy water availability. The hydraulic system is modelled as an analogue to simple electrical circuits in parallel, including a separate soil hydraulic resistance, plant resistance and plant capacitance for each canopy layer. Stomatal opening is initially controlled to conserve plant water stores and delay the onset of water stress. Stomatal closure at a threshold minimum leaf water potential prevents xylem cavitation and controls the maximum rate of water flux through the hydraulic system. We show a strong correlation between predicted hourly CO2 exchange rate (r2= 0.86) and LE (r2= 0.87) with independent whole‐forest measurements made by the eddy correlation method during the summer of 1992. Our theoretical derivation shows that observed relationships between CO2 assimilation and LE flux can be explained on the basis of stomatal behaviour optimizing carbon gain, and provides an explicit link between canopy structure, soil properties, atmospheric conditions and stomatal conductance.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-3040.1996.tb00456.x</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 1996-08, Vol.19 (8), p.911-927
issn 0140-7791
1365-3040
language eng
recordid cdi_proquest_miscellaneous_18163085
source Wiley Online Library Journals Frontfile Complete
subjects Acer rubrum
Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
photosynthesis
plant hydraulic conductance
Quercus rubra
soil‐plant‐atmosphere continuum model
stomatal conductance
Synecology
Terrestrial ecosystems
title Modelling the soil‐plant‐atmosphere continuum in a Quercus–Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20soil%E2%80%90plant%E2%80%90atmosphere%20continuum%20in%20a%20Quercus%E2%80%93Acer%20stand%20at%20Harvard%20Forest:%20the%20regulation%20of%20stomatal%20conductance%20by%20light,%20nitrogen%20and%20soil/plant%20hydraulic%20properties&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=WILLIAMS,%20M.&rft.date=1996-08&rft.volume=19&rft.issue=8&rft.spage=911&rft.epage=927&rft.pages=911-927&rft.issn=0140-7791&rft.eissn=1365-3040&rft.coden=PLCEDV&rft_id=info:doi/10.1111/j.1365-3040.1996.tb00456.x&rft_dat=%3Cproquest_cross%3E16038633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16038633&rft_id=info:pmid/&rfr_iscdi=true