NSCLC tumor shrinkage prediction using quantitative image features

Highlights • Lung tumors shrink during radiotherapy, with much variation between patients. • Pre-treatment CT images can be used to predict tumor shrinkage after treatment. • Potential uses include identifying patients who will benefit from adaptive radiation therapy.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 2016-04, Vol.49, p.29-36
Hauptverfasser: Hunter, Luke A, Chen, Yi Pei, Zhang, Lifei, Matney, Jason E, Choi, Haesun, Kry, Stephen F, Martel, Mary K, Stingo, Francesco, Liao, Zhongxing, Gomez, Daniel, Yang, Jinzhong, Court, Laurence E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue
container_start_page 29
container_title Computerized medical imaging and graphics
container_volume 49
creator Hunter, Luke A
Chen, Yi Pei
Zhang, Lifei
Matney, Jason E
Choi, Haesun
Kry, Stephen F
Martel, Mary K
Stingo, Francesco
Liao, Zhongxing
Gomez, Daniel
Yang, Jinzhong
Court, Laurence E
description Highlights • Lung tumors shrink during radiotherapy, with much variation between patients. • Pre-treatment CT images can be used to predict tumor shrinkage after treatment. • Potential uses include identifying patients who will benefit from adaptive radiation therapy.
doi_str_mv 10.1016/j.compmedimag.2015.11.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816093823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0895611115001755</els_id><sourcerecordid>1816093823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-205610d67a6baaf79c305f239aca2484b8f53f9de866d1b91979b6ee43c6602f3</originalsourceid><addsrcrecordid>eNqNksuO1DAQRS0EYpqBX0Bhxyahyo5fGySIeEktWAysLcdxGvfk0WMnI83f46gHhNgwKy986l6pThHyCqFCQPHmWLl5PI2-C6M9VBSQV4gVQP2I7FBJXYKU-JjsQGleCkS8IM9SOgIABYlPyQUVSipkckfef71q9k2xrOMci_QzhunaHnxxijncLWGeijWF6VDcrHZawmKXcOuLrdYXvbfLGn16Tp70dkj-xf17SX58_PC9-Vzuv3360rzbl67WaikpcIHQCWlFa20vtWPAe8q0dZbWqm5Vz1mvO6-E6LDVqKVuhfc1c0IA7dkleX3OPcX5ZvVpMWNIzg-Dnfy8JoMKBWimKPs_KjVogZzSB6CSC8ZBQEb1GXVxTin63pxiXkW8MwhmE2OO5i8xZhNjEE0Wk2df3tesbf7_M_nbRAaaM-DzCm-Djya54CeXs6J3i-nm8KCat_-kuCFMwdnh2t_5dJzXOGVHBk2iBszVdiHbgSAHQMk5-wXZ2rhq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1775635060</pqid></control><display><type>article</type><title>NSCLC tumor shrinkage prediction using quantitative image features</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hunter, Luke A ; Chen, Yi Pei ; Zhang, Lifei ; Matney, Jason E ; Choi, Haesun ; Kry, Stephen F ; Martel, Mary K ; Stingo, Francesco ; Liao, Zhongxing ; Gomez, Daniel ; Yang, Jinzhong ; Court, Laurence E</creator><creatorcontrib>Hunter, Luke A ; Chen, Yi Pei ; Zhang, Lifei ; Matney, Jason E ; Choi, Haesun ; Kry, Stephen F ; Martel, Mary K ; Stingo, Francesco ; Liao, Zhongxing ; Gomez, Daniel ; Yang, Jinzhong ; Court, Laurence E</creatorcontrib><description>Highlights • Lung tumors shrink during radiotherapy, with much variation between patients. • Pre-treatment CT images can be used to predict tumor shrinkage after treatment. • Potential uses include identifying patients who will benefit from adaptive radiation therapy.</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/j.compmedimag.2015.11.004</identifier><identifier>PMID: 26878137</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Carcinoma, Non-Small-Cell Lung - diagnostic imaging ; Carcinoma, Non-Small-Cell Lung - radiotherapy ; Feature extraction ; Humans ; Internal Medicine ; Lung Neoplasms - diagnostic imaging ; Lung Neoplasms - radiotherapy ; Mathematical models ; Medical services ; NSCLC ; Other ; Patients ; Pattern Recognition, Automated - methods ; prediction ; Pretreatment ; Prognosis ; Quantitative image feature ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiotherapy, Image-Guided - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Shrinkage ; Subtraction Technique ; texture ; Tomography, X-Ray Computed - methods ; Treatment Outcome ; Tumor Burden ; tumor shrinkage ; Tumors</subject><ispartof>Computerized medical imaging and graphics, 2016-04, Vol.49, p.29-36</ispartof><rights>2016</rights><rights>Copyright © 2016. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-205610d67a6baaf79c305f239aca2484b8f53f9de866d1b91979b6ee43c6602f3</citedby><cites>FETCH-LOGICAL-c498t-205610d67a6baaf79c305f239aca2484b8f53f9de866d1b91979b6ee43c6602f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compmedimag.2015.11.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26878137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunter, Luke A</creatorcontrib><creatorcontrib>Chen, Yi Pei</creatorcontrib><creatorcontrib>Zhang, Lifei</creatorcontrib><creatorcontrib>Matney, Jason E</creatorcontrib><creatorcontrib>Choi, Haesun</creatorcontrib><creatorcontrib>Kry, Stephen F</creatorcontrib><creatorcontrib>Martel, Mary K</creatorcontrib><creatorcontrib>Stingo, Francesco</creatorcontrib><creatorcontrib>Liao, Zhongxing</creatorcontrib><creatorcontrib>Gomez, Daniel</creatorcontrib><creatorcontrib>Yang, Jinzhong</creatorcontrib><creatorcontrib>Court, Laurence E</creatorcontrib><title>NSCLC tumor shrinkage prediction using quantitative image features</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>Highlights • Lung tumors shrink during radiotherapy, with much variation between patients. • Pre-treatment CT images can be used to predict tumor shrinkage after treatment. • Potential uses include identifying patients who will benefit from adaptive radiation therapy.</description><subject>Algorithms</subject><subject>Carcinoma, Non-Small-Cell Lung - diagnostic imaging</subject><subject>Carcinoma, Non-Small-Cell Lung - radiotherapy</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Lung Neoplasms - radiotherapy</subject><subject>Mathematical models</subject><subject>Medical services</subject><subject>NSCLC</subject><subject>Other</subject><subject>Patients</subject><subject>Pattern Recognition, Automated - methods</subject><subject>prediction</subject><subject>Pretreatment</subject><subject>Prognosis</subject><subject>Quantitative image feature</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiotherapy, Image-Guided - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Shrinkage</subject><subject>Subtraction Technique</subject><subject>texture</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Treatment Outcome</subject><subject>Tumor Burden</subject><subject>tumor shrinkage</subject><subject>Tumors</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNksuO1DAQRS0EYpqBX0Bhxyahyo5fGySIeEktWAysLcdxGvfk0WMnI83f46gHhNgwKy986l6pThHyCqFCQPHmWLl5PI2-C6M9VBSQV4gVQP2I7FBJXYKU-JjsQGleCkS8IM9SOgIABYlPyQUVSipkckfef71q9k2xrOMci_QzhunaHnxxijncLWGeijWF6VDcrHZawmKXcOuLrdYXvbfLGn16Tp70dkj-xf17SX58_PC9-Vzuv3360rzbl67WaikpcIHQCWlFa20vtWPAe8q0dZbWqm5Vz1mvO6-E6LDVqKVuhfc1c0IA7dkleX3OPcX5ZvVpMWNIzg-Dnfy8JoMKBWimKPs_KjVogZzSB6CSC8ZBQEb1GXVxTin63pxiXkW8MwhmE2OO5i8xZhNjEE0Wk2df3tesbf7_M_nbRAaaM-DzCm-Djya54CeXs6J3i-nm8KCat_-kuCFMwdnh2t_5dJzXOGVHBk2iBszVdiHbgSAHQMk5-wXZ2rhq</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Hunter, Luke A</creator><creator>Chen, Yi Pei</creator><creator>Zhang, Lifei</creator><creator>Matney, Jason E</creator><creator>Choi, Haesun</creator><creator>Kry, Stephen F</creator><creator>Martel, Mary K</creator><creator>Stingo, Francesco</creator><creator>Liao, Zhongxing</creator><creator>Gomez, Daniel</creator><creator>Yang, Jinzhong</creator><creator>Court, Laurence E</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160401</creationdate><title>NSCLC tumor shrinkage prediction using quantitative image features</title><author>Hunter, Luke A ; Chen, Yi Pei ; Zhang, Lifei ; Matney, Jason E ; Choi, Haesun ; Kry, Stephen F ; Martel, Mary K ; Stingo, Francesco ; Liao, Zhongxing ; Gomez, Daniel ; Yang, Jinzhong ; Court, Laurence E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-205610d67a6baaf79c305f239aca2484b8f53f9de866d1b91979b6ee43c6602f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Carcinoma, Non-Small-Cell Lung - diagnostic imaging</topic><topic>Carcinoma, Non-Small-Cell Lung - radiotherapy</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Lung Neoplasms - radiotherapy</topic><topic>Mathematical models</topic><topic>Medical services</topic><topic>NSCLC</topic><topic>Other</topic><topic>Patients</topic><topic>Pattern Recognition, Automated - methods</topic><topic>prediction</topic><topic>Pretreatment</topic><topic>Prognosis</topic><topic>Quantitative image feature</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiotherapy, Image-Guided - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Shrinkage</topic><topic>Subtraction Technique</topic><topic>texture</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Treatment Outcome</topic><topic>Tumor Burden</topic><topic>tumor shrinkage</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunter, Luke A</creatorcontrib><creatorcontrib>Chen, Yi Pei</creatorcontrib><creatorcontrib>Zhang, Lifei</creatorcontrib><creatorcontrib>Matney, Jason E</creatorcontrib><creatorcontrib>Choi, Haesun</creatorcontrib><creatorcontrib>Kry, Stephen F</creatorcontrib><creatorcontrib>Martel, Mary K</creatorcontrib><creatorcontrib>Stingo, Francesco</creatorcontrib><creatorcontrib>Liao, Zhongxing</creatorcontrib><creatorcontrib>Gomez, Daniel</creatorcontrib><creatorcontrib>Yang, Jinzhong</creatorcontrib><creatorcontrib>Court, Laurence E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunter, Luke A</au><au>Chen, Yi Pei</au><au>Zhang, Lifei</au><au>Matney, Jason E</au><au>Choi, Haesun</au><au>Kry, Stephen F</au><au>Martel, Mary K</au><au>Stingo, Francesco</au><au>Liao, Zhongxing</au><au>Gomez, Daniel</au><au>Yang, Jinzhong</au><au>Court, Laurence E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NSCLC tumor shrinkage prediction using quantitative image features</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>49</volume><spage>29</spage><epage>36</epage><pages>29-36</pages><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>Highlights • Lung tumors shrink during radiotherapy, with much variation between patients. • Pre-treatment CT images can be used to predict tumor shrinkage after treatment. • Potential uses include identifying patients who will benefit from adaptive radiation therapy.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>26878137</pmid><doi>10.1016/j.compmedimag.2015.11.004</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-6111
ispartof Computerized medical imaging and graphics, 2016-04, Vol.49, p.29-36
issn 0895-6111
1879-0771
language eng
recordid cdi_proquest_miscellaneous_1816093823
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Carcinoma, Non-Small-Cell Lung - diagnostic imaging
Carcinoma, Non-Small-Cell Lung - radiotherapy
Feature extraction
Humans
Internal Medicine
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - radiotherapy
Mathematical models
Medical services
NSCLC
Other
Patients
Pattern Recognition, Automated - methods
prediction
Pretreatment
Prognosis
Quantitative image feature
Radiographic Image Interpretation, Computer-Assisted - methods
Radiotherapy, Image-Guided - methods
Reproducibility of Results
Sensitivity and Specificity
Shrinkage
Subtraction Technique
texture
Tomography, X-Ray Computed - methods
Treatment Outcome
Tumor Burden
tumor shrinkage
Tumors
title NSCLC tumor shrinkage prediction using quantitative image features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NSCLC%20tumor%20shrinkage%20prediction%20using%20quantitative%20image%20features&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Hunter,%20Luke%20A&rft.date=2016-04-01&rft.volume=49&rft.spage=29&rft.epage=36&rft.pages=29-36&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/j.compmedimag.2015.11.004&rft_dat=%3Cproquest_cross%3E1816093823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1775635060&rft_id=info:pmid/26878137&rft_els_id=1_s2_0_S0895611115001755&rfr_iscdi=true