Er3+:Nd3+ concentration dependent spectral features of lithium-niobate-tellurite amorphous media

We report the Er3+/Nd3+co-dopants concentration dependent on thermal, structural, absorption and emission properties of tellurite glasses of composition (70-x-y)TeO2–15Li2CO3–15Nb2O5–(x)Er2O3–(y)Nd2O3 with x=0 and 1.0mol%, and 0≤y≤1.0mol%. Glasses are synthesized via melt-quenching method and charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-crystalline solids 2016-07, Vol.443, p.23-32
Hauptverfasser: Nurhafizah, H., Rohani, M.S., Ghoshal, S.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue
container_start_page 23
container_title Journal of non-crystalline solids
container_volume 443
creator Nurhafizah, H.
Rohani, M.S.
Ghoshal, S.K.
description We report the Er3+/Nd3+co-dopants concentration dependent on thermal, structural, absorption and emission properties of tellurite glasses of composition (70-x-y)TeO2–15Li2CO3–15Nb2O5–(x)Er2O3–(y)Nd2O3 with x=0 and 1.0mol%, and 0≤y≤1.0mol%. Glasses are synthesized via melt-quenching method and characterized. The XRD pattern confirmed the amorphous nature of thermally stable and transparent glasses. Physical properties such as refractive index, molar volume, density, polarizability and molar refractions are determined. The thermal parameters particularly the thermal stability is from 281°C to 302°C and Hruby criterion of around 0.82 to 0.93 revealed a wide glass formation range. The structural properties of the glass represented by the FTIR spectrum indicate that as Nd2O3 content increases, the sharp infrared absorption peaks shifted from 474.7cm−1 to 499.4cm−1. These peaks are due to NbO, TeOTe and OTeO bond linkage bending vibration. For TeO4 trigonal bipyramid, the peak occurred at 672.5cm−1 to 680.4cm−1 whereas for TeO3 trigonal pyramid, two infrared band peaks were observed at 784.7–790.2cm−1 and 883.5–891.7cm−1. The absorption peaks around 1382.7cm−1 is due to the TeONb stretching vibration while peaks at 1633.7–1637.2cm−1 and 3390.1–3433.2cm−1 are due to the stretching vibrations of the hydroxyl group participating in the strong metal bonding as well as in the hydrogen bonding, respectively. Raman spectra displayed a peak shift of NbO bending vibration at 205.3 to 213.3cm−1, symmetric stretching and bending vibrations of Te-eqO-axTe at 354.6 to 356.9cm−1 and 375.3 to 380.9cm−1. For TeO4 trigonal bipyramid, the peak occurred at 622.8cm−1 and the TeO3 trigonal pyramid occurred at 845.4 to 849.6cm−1. Both direct and indirect optical band gap energies are increased with 2.84 to 3.12eV and 2.53 to 2.67eV, respectively. Urbach energy is decreased with the increase of Nd2O3 contents from 0.31 to 0.23eV. The room temperature up-conversion photoluminescence under 725nm excitations displayed two prominent bands centred at 616nm (orange) and 633nm (red). The manifested strong green band (497nm) in the down-converted luminescence spectra is attributed to the energy transfer from erbium to neodymium ion. The highest luminescence intensity is achieved for x=y=1.0mol%. The influence of co-dopants on the emission properties is analysed using rare earth ions' partial energy level diagram. The excellent luminescence properties of these glasses suggest their suitability
doi_str_mv 10.1016/j.jnoncrysol.2016.04.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816091809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309316300990</els_id><sourcerecordid>1816091809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-1bce8df71a5af6a0bf3d10dcbbf151f6b5f971d16ed1064fbe68f27c56570ba83</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-hxyFpTXTbtusN13WP7DoRc8xTSZslrapSSrstzeygkfnMsxj5vHmRwgFlgOD-maf7wc3KH8IrsuLpORsmTNWnJAZ8KbMlhyKUzJLSpGVbFWek4sQ9ixVU_IZ-dj4cnH7ossFVckGh-hltG6gGkccdJppGFEltaMGZZw8BuoM7Wzc2anPButaGTGL2HWTtxGp7J0fd24KtEdt5SU5M7ILePXb5-T9YfO2fsq2r4_P67ttpgoOMYNWIdemAVlJU0vWmlID06ptDVRg6rYyqwY01JjkemlarLkpGlXVVcNaycs5uT76jt59Thii6G1QKZUcMIURwKFmK-AJwZzw46ryLgSPRoze9tIfBDDxA1XsxR9U8QNVsKVICNPp_fEU0ytfFr0IymLipq1PlIR29n-Tbz4NiFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816091809</pqid></control><display><type>article</type><title>Er3+:Nd3+ concentration dependent spectral features of lithium-niobate-tellurite amorphous media</title><source>Elsevier ScienceDirect Journals</source><creator>Nurhafizah, H. ; Rohani, M.S. ; Ghoshal, S.K.</creator><creatorcontrib>Nurhafizah, H. ; Rohani, M.S. ; Ghoshal, S.K.</creatorcontrib><description>We report the Er3+/Nd3+co-dopants concentration dependent on thermal, structural, absorption and emission properties of tellurite glasses of composition (70-x-y)TeO2–15Li2CO3–15Nb2O5–(x)Er2O3–(y)Nd2O3 with x=0 and 1.0mol%, and 0≤y≤1.0mol%. Glasses are synthesized via melt-quenching method and characterized. The XRD pattern confirmed the amorphous nature of thermally stable and transparent glasses. Physical properties such as refractive index, molar volume, density, polarizability and molar refractions are determined. The thermal parameters particularly the thermal stability is from 281°C to 302°C and Hruby criterion of around 0.82 to 0.93 revealed a wide glass formation range. The structural properties of the glass represented by the FTIR spectrum indicate that as Nd2O3 content increases, the sharp infrared absorption peaks shifted from 474.7cm−1 to 499.4cm−1. These peaks are due to NbO, TeOTe and OTeO bond linkage bending vibration. For TeO4 trigonal bipyramid, the peak occurred at 672.5cm−1 to 680.4cm−1 whereas for TeO3 trigonal pyramid, two infrared band peaks were observed at 784.7–790.2cm−1 and 883.5–891.7cm−1. The absorption peaks around 1382.7cm−1 is due to the TeONb stretching vibration while peaks at 1633.7–1637.2cm−1 and 3390.1–3433.2cm−1 are due to the stretching vibrations of the hydroxyl group participating in the strong metal bonding as well as in the hydrogen bonding, respectively. Raman spectra displayed a peak shift of NbO bending vibration at 205.3 to 213.3cm−1, symmetric stretching and bending vibrations of Te-eqO-axTe at 354.6 to 356.9cm−1 and 375.3 to 380.9cm−1. For TeO4 trigonal bipyramid, the peak occurred at 622.8cm−1 and the TeO3 trigonal pyramid occurred at 845.4 to 849.6cm−1. Both direct and indirect optical band gap energies are increased with 2.84 to 3.12eV and 2.53 to 2.67eV, respectively. Urbach energy is decreased with the increase of Nd2O3 contents from 0.31 to 0.23eV. The room temperature up-conversion photoluminescence under 725nm excitations displayed two prominent bands centred at 616nm (orange) and 633nm (red). The manifested strong green band (497nm) in the down-converted luminescence spectra is attributed to the energy transfer from erbium to neodymium ion. The highest luminescence intensity is achieved for x=y=1.0mol%. The influence of co-dopants on the emission properties is analysed using rare earth ions' partial energy level diagram. The excellent luminescence properties of these glasses suggest their suitability for solid state lasers and other photonic applications. •Lithium niobate tellurite glasses with varying Er3+ and Nd3+ content have been synthesized.•Spectral dependent properties of glass on rare-earth dopants depict the re-arrangement in structures and bonding of glass network.•Energy transfer between pairs of Nd3+ ions and migration of excitation energy stimulated enhancement and quenching in luminescence.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2016.04.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Absorption ; Bending vibration ; Glass ; Luminescence ; Luminescence quenching ; Melt-quenching ; Photoluminescence ; Pyramids ; Rare earth metals ; Spectra ; Stretching ; Thermal stability ; Vibration</subject><ispartof>Journal of non-crystalline solids, 2016-07, Vol.443, p.23-32</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-1bce8df71a5af6a0bf3d10dcbbf151f6b5f971d16ed1064fbe68f27c56570ba83</citedby><cites>FETCH-LOGICAL-c281t-1bce8df71a5af6a0bf3d10dcbbf151f6b5f971d16ed1064fbe68f27c56570ba83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022309316300990$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nurhafizah, H.</creatorcontrib><creatorcontrib>Rohani, M.S.</creatorcontrib><creatorcontrib>Ghoshal, S.K.</creatorcontrib><title>Er3+:Nd3+ concentration dependent spectral features of lithium-niobate-tellurite amorphous media</title><title>Journal of non-crystalline solids</title><description>We report the Er3+/Nd3+co-dopants concentration dependent on thermal, structural, absorption and emission properties of tellurite glasses of composition (70-x-y)TeO2–15Li2CO3–15Nb2O5–(x)Er2O3–(y)Nd2O3 with x=0 and 1.0mol%, and 0≤y≤1.0mol%. Glasses are synthesized via melt-quenching method and characterized. The XRD pattern confirmed the amorphous nature of thermally stable and transparent glasses. Physical properties such as refractive index, molar volume, density, polarizability and molar refractions are determined. The thermal parameters particularly the thermal stability is from 281°C to 302°C and Hruby criterion of around 0.82 to 0.93 revealed a wide glass formation range. The structural properties of the glass represented by the FTIR spectrum indicate that as Nd2O3 content increases, the sharp infrared absorption peaks shifted from 474.7cm−1 to 499.4cm−1. These peaks are due to NbO, TeOTe and OTeO bond linkage bending vibration. For TeO4 trigonal bipyramid, the peak occurred at 672.5cm−1 to 680.4cm−1 whereas for TeO3 trigonal pyramid, two infrared band peaks were observed at 784.7–790.2cm−1 and 883.5–891.7cm−1. The absorption peaks around 1382.7cm−1 is due to the TeONb stretching vibration while peaks at 1633.7–1637.2cm−1 and 3390.1–3433.2cm−1 are due to the stretching vibrations of the hydroxyl group participating in the strong metal bonding as well as in the hydrogen bonding, respectively. Raman spectra displayed a peak shift of NbO bending vibration at 205.3 to 213.3cm−1, symmetric stretching and bending vibrations of Te-eqO-axTe at 354.6 to 356.9cm−1 and 375.3 to 380.9cm−1. For TeO4 trigonal bipyramid, the peak occurred at 622.8cm−1 and the TeO3 trigonal pyramid occurred at 845.4 to 849.6cm−1. Both direct and indirect optical band gap energies are increased with 2.84 to 3.12eV and 2.53 to 2.67eV, respectively. Urbach energy is decreased with the increase of Nd2O3 contents from 0.31 to 0.23eV. The room temperature up-conversion photoluminescence under 725nm excitations displayed two prominent bands centred at 616nm (orange) and 633nm (red). The manifested strong green band (497nm) in the down-converted luminescence spectra is attributed to the energy transfer from erbium to neodymium ion. The highest luminescence intensity is achieved for x=y=1.0mol%. The influence of co-dopants on the emission properties is analysed using rare earth ions' partial energy level diagram. The excellent luminescence properties of these glasses suggest their suitability for solid state lasers and other photonic applications. •Lithium niobate tellurite glasses with varying Er3+ and Nd3+ content have been synthesized.•Spectral dependent properties of glass on rare-earth dopants depict the re-arrangement in structures and bonding of glass network.•Energy transfer between pairs of Nd3+ ions and migration of excitation energy stimulated enhancement and quenching in luminescence.</description><subject>Absorption</subject><subject>Bending vibration</subject><subject>Glass</subject><subject>Luminescence</subject><subject>Luminescence quenching</subject><subject>Melt-quenching</subject><subject>Photoluminescence</subject><subject>Pyramids</subject><subject>Rare earth metals</subject><subject>Spectra</subject><subject>Stretching</subject><subject>Thermal stability</subject><subject>Vibration</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-hxyFpTXTbtusN13WP7DoRc8xTSZslrapSSrstzeygkfnMsxj5vHmRwgFlgOD-maf7wc3KH8IrsuLpORsmTNWnJAZ8KbMlhyKUzJLSpGVbFWek4sQ9ixVU_IZ-dj4cnH7ossFVckGh-hltG6gGkccdJppGFEltaMGZZw8BuoM7Wzc2anPButaGTGL2HWTtxGp7J0fd24KtEdt5SU5M7ILePXb5-T9YfO2fsq2r4_P67ttpgoOMYNWIdemAVlJU0vWmlID06ptDVRg6rYyqwY01JjkemlarLkpGlXVVcNaycs5uT76jt59Thii6G1QKZUcMIURwKFmK-AJwZzw46ryLgSPRoze9tIfBDDxA1XsxR9U8QNVsKVICNPp_fEU0ytfFr0IymLipq1PlIR29n-Tbz4NiFA</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Nurhafizah, H.</creator><creator>Rohani, M.S.</creator><creator>Ghoshal, S.K.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Er3+:Nd3+ concentration dependent spectral features of lithium-niobate-tellurite amorphous media</title><author>Nurhafizah, H. ; Rohani, M.S. ; Ghoshal, S.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-1bce8df71a5af6a0bf3d10dcbbf151f6b5f971d16ed1064fbe68f27c56570ba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Absorption</topic><topic>Bending vibration</topic><topic>Glass</topic><topic>Luminescence</topic><topic>Luminescence quenching</topic><topic>Melt-quenching</topic><topic>Photoluminescence</topic><topic>Pyramids</topic><topic>Rare earth metals</topic><topic>Spectra</topic><topic>Stretching</topic><topic>Thermal stability</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nurhafizah, H.</creatorcontrib><creatorcontrib>Rohani, M.S.</creatorcontrib><creatorcontrib>Ghoshal, S.K.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nurhafizah, H.</au><au>Rohani, M.S.</au><au>Ghoshal, S.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Er3+:Nd3+ concentration dependent spectral features of lithium-niobate-tellurite amorphous media</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>443</volume><spage>23</spage><epage>32</epage><pages>23-32</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><abstract>We report the Er3+/Nd3+co-dopants concentration dependent on thermal, structural, absorption and emission properties of tellurite glasses of composition (70-x-y)TeO2–15Li2CO3–15Nb2O5–(x)Er2O3–(y)Nd2O3 with x=0 and 1.0mol%, and 0≤y≤1.0mol%. Glasses are synthesized via melt-quenching method and characterized. The XRD pattern confirmed the amorphous nature of thermally stable and transparent glasses. Physical properties such as refractive index, molar volume, density, polarizability and molar refractions are determined. The thermal parameters particularly the thermal stability is from 281°C to 302°C and Hruby criterion of around 0.82 to 0.93 revealed a wide glass formation range. The structural properties of the glass represented by the FTIR spectrum indicate that as Nd2O3 content increases, the sharp infrared absorption peaks shifted from 474.7cm−1 to 499.4cm−1. These peaks are due to NbO, TeOTe and OTeO bond linkage bending vibration. For TeO4 trigonal bipyramid, the peak occurred at 672.5cm−1 to 680.4cm−1 whereas for TeO3 trigonal pyramid, two infrared band peaks were observed at 784.7–790.2cm−1 and 883.5–891.7cm−1. The absorption peaks around 1382.7cm−1 is due to the TeONb stretching vibration while peaks at 1633.7–1637.2cm−1 and 3390.1–3433.2cm−1 are due to the stretching vibrations of the hydroxyl group participating in the strong metal bonding as well as in the hydrogen bonding, respectively. Raman spectra displayed a peak shift of NbO bending vibration at 205.3 to 213.3cm−1, symmetric stretching and bending vibrations of Te-eqO-axTe at 354.6 to 356.9cm−1 and 375.3 to 380.9cm−1. For TeO4 trigonal bipyramid, the peak occurred at 622.8cm−1 and the TeO3 trigonal pyramid occurred at 845.4 to 849.6cm−1. Both direct and indirect optical band gap energies are increased with 2.84 to 3.12eV and 2.53 to 2.67eV, respectively. Urbach energy is decreased with the increase of Nd2O3 contents from 0.31 to 0.23eV. The room temperature up-conversion photoluminescence under 725nm excitations displayed two prominent bands centred at 616nm (orange) and 633nm (red). The manifested strong green band (497nm) in the down-converted luminescence spectra is attributed to the energy transfer from erbium to neodymium ion. The highest luminescence intensity is achieved for x=y=1.0mol%. The influence of co-dopants on the emission properties is analysed using rare earth ions' partial energy level diagram. The excellent luminescence properties of these glasses suggest their suitability for solid state lasers and other photonic applications. •Lithium niobate tellurite glasses with varying Er3+ and Nd3+ content have been synthesized.•Spectral dependent properties of glass on rare-earth dopants depict the re-arrangement in structures and bonding of glass network.•Energy transfer between pairs of Nd3+ ions and migration of excitation energy stimulated enhancement and quenching in luminescence.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2016.04.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3093
ispartof Journal of non-crystalline solids, 2016-07, Vol.443, p.23-32
issn 0022-3093
1873-4812
language eng
recordid cdi_proquest_miscellaneous_1816091809
source Elsevier ScienceDirect Journals
subjects Absorption
Bending vibration
Glass
Luminescence
Luminescence quenching
Melt-quenching
Photoluminescence
Pyramids
Rare earth metals
Spectra
Stretching
Thermal stability
Vibration
title Er3+:Nd3+ concentration dependent spectral features of lithium-niobate-tellurite amorphous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Er3+:Nd3+%20concentration%20dependent%20spectral%20features%20of%20lithium-niobate-tellurite%20amorphous%20media&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Nurhafizah,%20H.&rft.date=2016-07-01&rft.volume=443&rft.spage=23&rft.epage=32&rft.pages=23-32&rft.issn=0022-3093&rft.eissn=1873-4812&rft_id=info:doi/10.1016/j.jnoncrysol.2016.04.002&rft_dat=%3Cproquest_cross%3E1816091809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816091809&rft_id=info:pmid/&rft_els_id=S0022309316300990&rfr_iscdi=true