The influence of Mn doping on the properties of Ge sub(4)Sb sub(2)Te sub(7)

Ge sub(3)MnSb sub(2)Te sub(7) and Ge sub(3.5)Mn sub(0.5)Sb sub(2)Te sub(7) are doped variants of Ge sub(4)Sb sub(2)Te sub(7), a material from the homologous series (GeTe) sub(n)Sb sub(2)Te sub(3). Phase purity was confirmed by ICP-AES, EDX and quantitative yield according to powder X-ray diffraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2015-12, Vol.652, p.74-82
Hauptverfasser: Welzmillera, Simon, Heinkea, Frank, Hutha, Paula, Bothmannb, Georg, Scheidtb, Ernst-Wilhelm, Wagnera, Gerald, Schererb, Wolfgang, Popplc, Andreas, Oecklera, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue
container_start_page 74
container_title Journal of alloys and compounds
container_volume 652
creator Welzmillera, Simon
Heinkea, Frank
Hutha, Paula
Bothmannb, Georg
Scheidtb, Ernst-Wilhelm
Wagnera, Gerald
Schererb, Wolfgang
Popplc, Andreas
Oecklera, Oliver
description Ge sub(3)MnSb sub(2)Te sub(7) and Ge sub(3.5)Mn sub(0.5)Sb sub(2)Te sub(7) are doped variants of Ge sub(4)Sb sub(2)Te sub(7), a material from the homologous series (GeTe) sub(n)Sb sub(2)Te sub(3). Phase purity was confirmed by ICP-AES, EDX and quantitative yield according to powder X-ray diffraction. Quenched solid solutions are metastable and exhibit a rocksalt-type average structure and contain multiply twinned domains with superstructures. At similar to 300 degree C, a phase transition leads to a trigonal layered phase, predominantly corresponding to the 33R-Ge sub(3)As sub(2)Sb sub(6) type. However, traces of a rocksalt-type phase remain. A rocksalt-type high-temperature phase forms between 500 degree C and similar to 590 degree C. EPR spectra reveal the oxidation state +II for Mn [g = 2.001(5)], which is also supported by an effective magnetic moment mu sub(eff) = 5.713 mu sub(B). The Mn super(2+) content of 7.2(5) at% as derived from the magnetic susceptibility agrees with the nominal content of 7.7 at%. A temperature-dependent change in the line width and shape of the EPR signal below 20 K indicates magnetic ordering, which is in agreement with magnetic measurements. A paramagnetic Curie temperature Theta sub(P) = -43 K indicates antiferromagnetic fluctuations that set in at similar to 50 K. Mn doping reduces the electrical conductivity, while the Seebeck coefficient increases significantly up to 190 mu V/K. The thermoelectric properties are affected by the phase transitions. In a first heating cycle, ZT reaches a maximum of similar to 0.5 below 300 degree C and again at 500 degree C. After the first cycle the first maximum disappears as the metastable phase is accessible only by quenching, but the second one is reproducible. Compared to Ge sub(4)Sb sub(2)Te sub(7), the ZT value of Mn-doped samples is higher for the quenched phase and at high temperatures.
doi_str_mv 10.1016/j.jallcom.2015.08.170
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816089698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816089698</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18160896983</originalsourceid><addsrcrecordid>eNqVjMsOgjAURLvQRHx8gkmXsqDeC4JlbXwkxpXsCeBFIbVFC_8vPn7A1ZzMmQxjcwSBgNGyFnWmVGHuwgcMBUiBaxgwB2I_9GQg5YiNra0BAOMAHXZMbsQrXaqOdEHclPyk-cU0lb5yo3nb2-ZpGnq2Fdm33hO3Xb5Yuef8A76bfJu1O2XDMlOWZr-csMVum2wOXv_w6Mi26b2yBSmVaTKdTVFiBDKOYhn8MX0BUYhFaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816089698</pqid></control><display><type>article</type><title>The influence of Mn doping on the properties of Ge sub(4)Sb sub(2)Te sub(7)</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Welzmillera, Simon ; Heinkea, Frank ; Hutha, Paula ; Bothmannb, Georg ; Scheidtb, Ernst-Wilhelm ; Wagnera, Gerald ; Schererb, Wolfgang ; Popplc, Andreas ; Oecklera, Oliver</creator><creatorcontrib>Welzmillera, Simon ; Heinkea, Frank ; Hutha, Paula ; Bothmannb, Georg ; Scheidtb, Ernst-Wilhelm ; Wagnera, Gerald ; Schererb, Wolfgang ; Popplc, Andreas ; Oecklera, Oliver</creatorcontrib><description>Ge sub(3)MnSb sub(2)Te sub(7) and Ge sub(3.5)Mn sub(0.5)Sb sub(2)Te sub(7) are doped variants of Ge sub(4)Sb sub(2)Te sub(7), a material from the homologous series (GeTe) sub(n)Sb sub(2)Te sub(3). Phase purity was confirmed by ICP-AES, EDX and quantitative yield according to powder X-ray diffraction. Quenched solid solutions are metastable and exhibit a rocksalt-type average structure and contain multiply twinned domains with superstructures. At similar to 300 degree C, a phase transition leads to a trigonal layered phase, predominantly corresponding to the 33R-Ge sub(3)As sub(2)Sb sub(6) type. However, traces of a rocksalt-type phase remain. A rocksalt-type high-temperature phase forms between 500 degree C and similar to 590 degree C. EPR spectra reveal the oxidation state +II for Mn [g = 2.001(5)], which is also supported by an effective magnetic moment mu sub(eff) = 5.713 mu sub(B). The Mn super(2+) content of 7.2(5) at% as derived from the magnetic susceptibility agrees with the nominal content of 7.7 at%. A temperature-dependent change in the line width and shape of the EPR signal below 20 K indicates magnetic ordering, which is in agreement with magnetic measurements. A paramagnetic Curie temperature Theta sub(P) = -43 K indicates antiferromagnetic fluctuations that set in at similar to 50 K. Mn doping reduces the electrical conductivity, while the Seebeck coefficient increases significantly up to 190 mu V/K. The thermoelectric properties are affected by the phase transitions. In a first heating cycle, ZT reaches a maximum of similar to 0.5 below 300 degree C and again at 500 degree C. After the first cycle the first maximum disappears as the metastable phase is accessible only by quenching, but the second one is reproducible. Compared to Ge sub(4)Sb sub(2)Te sub(7), the ZT value of Mn-doped samples is higher for the quenched phase and at high temperatures.</description><identifier>ISSN: 0925-8388</identifier><identifier>DOI: 10.1016/j.jallcom.2015.08.170</identifier><language>eng</language><subject>Doping ; Emission analysis ; Heating ; Inductively coupled plasma ; Order disorder ; Phase transformations ; Quenching (cooling) ; Spectroscopy</subject><ispartof>Journal of alloys and compounds, 2015-12, Vol.652, p.74-82</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Welzmillera, Simon</creatorcontrib><creatorcontrib>Heinkea, Frank</creatorcontrib><creatorcontrib>Hutha, Paula</creatorcontrib><creatorcontrib>Bothmannb, Georg</creatorcontrib><creatorcontrib>Scheidtb, Ernst-Wilhelm</creatorcontrib><creatorcontrib>Wagnera, Gerald</creatorcontrib><creatorcontrib>Schererb, Wolfgang</creatorcontrib><creatorcontrib>Popplc, Andreas</creatorcontrib><creatorcontrib>Oecklera, Oliver</creatorcontrib><title>The influence of Mn doping on the properties of Ge sub(4)Sb sub(2)Te sub(7)</title><title>Journal of alloys and compounds</title><description>Ge sub(3)MnSb sub(2)Te sub(7) and Ge sub(3.5)Mn sub(0.5)Sb sub(2)Te sub(7) are doped variants of Ge sub(4)Sb sub(2)Te sub(7), a material from the homologous series (GeTe) sub(n)Sb sub(2)Te sub(3). Phase purity was confirmed by ICP-AES, EDX and quantitative yield according to powder X-ray diffraction. Quenched solid solutions are metastable and exhibit a rocksalt-type average structure and contain multiply twinned domains with superstructures. At similar to 300 degree C, a phase transition leads to a trigonal layered phase, predominantly corresponding to the 33R-Ge sub(3)As sub(2)Sb sub(6) type. However, traces of a rocksalt-type phase remain. A rocksalt-type high-temperature phase forms between 500 degree C and similar to 590 degree C. EPR spectra reveal the oxidation state +II for Mn [g = 2.001(5)], which is also supported by an effective magnetic moment mu sub(eff) = 5.713 mu sub(B). The Mn super(2+) content of 7.2(5) at% as derived from the magnetic susceptibility agrees with the nominal content of 7.7 at%. A temperature-dependent change in the line width and shape of the EPR signal below 20 K indicates magnetic ordering, which is in agreement with magnetic measurements. A paramagnetic Curie temperature Theta sub(P) = -43 K indicates antiferromagnetic fluctuations that set in at similar to 50 K. Mn doping reduces the electrical conductivity, while the Seebeck coefficient increases significantly up to 190 mu V/K. The thermoelectric properties are affected by the phase transitions. In a first heating cycle, ZT reaches a maximum of similar to 0.5 below 300 degree C and again at 500 degree C. After the first cycle the first maximum disappears as the metastable phase is accessible only by quenching, but the second one is reproducible. Compared to Ge sub(4)Sb sub(2)Te sub(7), the ZT value of Mn-doped samples is higher for the quenched phase and at high temperatures.</description><subject>Doping</subject><subject>Emission analysis</subject><subject>Heating</subject><subject>Inductively coupled plasma</subject><subject>Order disorder</subject><subject>Phase transformations</subject><subject>Quenching (cooling)</subject><subject>Spectroscopy</subject><issn>0925-8388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVjMsOgjAURLvQRHx8gkmXsqDeC4JlbXwkxpXsCeBFIbVFC_8vPn7A1ZzMmQxjcwSBgNGyFnWmVGHuwgcMBUiBaxgwB2I_9GQg5YiNra0BAOMAHXZMbsQrXaqOdEHclPyk-cU0lb5yo3nb2-ZpGnq2Fdm33hO3Xb5Yuef8A76bfJu1O2XDMlOWZr-csMVum2wOXv_w6Mi26b2yBSmVaTKdTVFiBDKOYhn8MX0BUYhFaQ</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Welzmillera, Simon</creator><creator>Heinkea, Frank</creator><creator>Hutha, Paula</creator><creator>Bothmannb, Georg</creator><creator>Scheidtb, Ernst-Wilhelm</creator><creator>Wagnera, Gerald</creator><creator>Schererb, Wolfgang</creator><creator>Popplc, Andreas</creator><creator>Oecklera, Oliver</creator><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20151215</creationdate><title>The influence of Mn doping on the properties of Ge sub(4)Sb sub(2)Te sub(7)</title><author>Welzmillera, Simon ; Heinkea, Frank ; Hutha, Paula ; Bothmannb, Georg ; Scheidtb, Ernst-Wilhelm ; Wagnera, Gerald ; Schererb, Wolfgang ; Popplc, Andreas ; Oecklera, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18160896983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Doping</topic><topic>Emission analysis</topic><topic>Heating</topic><topic>Inductively coupled plasma</topic><topic>Order disorder</topic><topic>Phase transformations</topic><topic>Quenching (cooling)</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Welzmillera, Simon</creatorcontrib><creatorcontrib>Heinkea, Frank</creatorcontrib><creatorcontrib>Hutha, Paula</creatorcontrib><creatorcontrib>Bothmannb, Georg</creatorcontrib><creatorcontrib>Scheidtb, Ernst-Wilhelm</creatorcontrib><creatorcontrib>Wagnera, Gerald</creatorcontrib><creatorcontrib>Schererb, Wolfgang</creatorcontrib><creatorcontrib>Popplc, Andreas</creatorcontrib><creatorcontrib>Oecklera, Oliver</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Welzmillera, Simon</au><au>Heinkea, Frank</au><au>Hutha, Paula</au><au>Bothmannb, Georg</au><au>Scheidtb, Ernst-Wilhelm</au><au>Wagnera, Gerald</au><au>Schererb, Wolfgang</au><au>Popplc, Andreas</au><au>Oecklera, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of Mn doping on the properties of Ge sub(4)Sb sub(2)Te sub(7)</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2015-12-15</date><risdate>2015</risdate><volume>652</volume><spage>74</spage><epage>82</epage><pages>74-82</pages><issn>0925-8388</issn><abstract>Ge sub(3)MnSb sub(2)Te sub(7) and Ge sub(3.5)Mn sub(0.5)Sb sub(2)Te sub(7) are doped variants of Ge sub(4)Sb sub(2)Te sub(7), a material from the homologous series (GeTe) sub(n)Sb sub(2)Te sub(3). Phase purity was confirmed by ICP-AES, EDX and quantitative yield according to powder X-ray diffraction. Quenched solid solutions are metastable and exhibit a rocksalt-type average structure and contain multiply twinned domains with superstructures. At similar to 300 degree C, a phase transition leads to a trigonal layered phase, predominantly corresponding to the 33R-Ge sub(3)As sub(2)Sb sub(6) type. However, traces of a rocksalt-type phase remain. A rocksalt-type high-temperature phase forms between 500 degree C and similar to 590 degree C. EPR spectra reveal the oxidation state +II for Mn [g = 2.001(5)], which is also supported by an effective magnetic moment mu sub(eff) = 5.713 mu sub(B). The Mn super(2+) content of 7.2(5) at% as derived from the magnetic susceptibility agrees with the nominal content of 7.7 at%. A temperature-dependent change in the line width and shape of the EPR signal below 20 K indicates magnetic ordering, which is in agreement with magnetic measurements. A paramagnetic Curie temperature Theta sub(P) = -43 K indicates antiferromagnetic fluctuations that set in at similar to 50 K. Mn doping reduces the electrical conductivity, while the Seebeck coefficient increases significantly up to 190 mu V/K. The thermoelectric properties are affected by the phase transitions. In a first heating cycle, ZT reaches a maximum of similar to 0.5 below 300 degree C and again at 500 degree C. After the first cycle the first maximum disappears as the metastable phase is accessible only by quenching, but the second one is reproducible. Compared to Ge sub(4)Sb sub(2)Te sub(7), the ZT value of Mn-doped samples is higher for the quenched phase and at high temperatures.</abstract><doi>10.1016/j.jallcom.2015.08.170</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2015-12, Vol.652, p.74-82
issn 0925-8388
language eng
recordid cdi_proquest_miscellaneous_1816089698
source ScienceDirect Journals (5 years ago - present)
subjects Doping
Emission analysis
Heating
Inductively coupled plasma
Order disorder
Phase transformations
Quenching (cooling)
Spectroscopy
title The influence of Mn doping on the properties of Ge sub(4)Sb sub(2)Te sub(7)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A07%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20Mn%20doping%20on%20the%20properties%20of%20Ge%20sub(4)Sb%20sub(2)Te%20sub(7)&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Welzmillera,%20Simon&rft.date=2015-12-15&rft.volume=652&rft.spage=74&rft.epage=82&rft.pages=74-82&rft.issn=0925-8388&rft_id=info:doi/10.1016/j.jallcom.2015.08.170&rft_dat=%3Cproquest%3E1816089698%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816089698&rft_id=info:pmid/&rfr_iscdi=true