Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer
This research investigated the heat transfer characteristics of propylene glycol-treated graphene nanoplatelet-based water (PGGNP-Water) nanofluid. To reach a stable collide in liquid media, miscible PG was decorated. The PGGNP-Water with specific surface area of 750m2/g used under closed conduit tu...
Gespeichert in:
Veröffentlicht in: | International communications in heat and mass transfer 2016-04, Vol.73, p.43-53 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | |
container_start_page | 43 |
container_title | International communications in heat and mass transfer |
container_volume | 73 |
creator | Solangi, K.H. Amiri, Ahmad Luhur, M.R. Ghavimi, Soheila Ali Akbari Zubir, Mohd Nashrul Mohd Kazi, S.N. Badarudin, A. |
description | This research investigated the heat transfer characteristics of propylene glycol-treated graphene nanoplatelet-based water (PGGNP-Water) nanofluid. To reach a stable collide in liquid media, miscible PG was decorated. The PGGNP-Water with specific surface area of 750m2/g used under closed conduit turbulent convective heat transfer inside a circular copper tube was subjected to constant wall heat fluxes 23,870W/m2 and 18,565W/m2. The experiments were conducted for a Reynolds number range of 3900–11,700. The impact of the dispersed nanoparticles concentration on thermal properties, convective heat transfer coefficient, Nusselt number, Friction factor, performance index, pumping power and efficiency of loop are investigated. An enhancement in thermal conductivity of PGGNP was observed in between 20% and 32% compared to base fluid. It was found that the PGGNP-Water has a maximum of 119% higher heat transfer coefficient compared to base fluid at 0.1wt.%. The performance index and pumping power showed the positive effect. The results indicated that both Nusselt number and friction factor of the nanofluid increase with increasing particle volume concentration and Reynolds number. It appears that PGGNP-Water nanofluids can function as working fluids in heat transfer applications and provide good alternatives to conventional working fluids in the thermal fluid systems. |
doi_str_mv | 10.1016/j.icheatmasstransfer.2016.02.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816084284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193316300409</els_id><sourcerecordid>1816084284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-5cf40dd01ef893007873c6a0902ffeb6953e39cb0df0b652b8b7c3c25bec25333</originalsourceid><addsrcrecordid>eNqNUcFu1DAUtCoqdSn9Bx97SXiON4lzA1WFgir1AmfLcZ53vfLawXZW7K_wtTgsnHrhYksz783TzBByz6BmwLr3h9rqPap8VCnlqHwyGOumMDU0NQC_Ihsm-qEC1os3ZAM9bys2cH5D3qZ0AAAmmNiQX48_Z4z2iD4rR60_Ycp2p7INngZD8x7pHMN8duiR7txZB1flWO7iRHdRzfsV98qH2RXMYU7UhPhnD_1eeY2r9CqlXUhlSQc_LTbTvMRxcStXkBPqbE9IV0P0n5t35Nool_Du739Lvn96_PbwVD2_fP7y8PG50rxvc9Vqs4VpAoZGDBygFz3XnYIBGmNw7IaWIx_0CJOBsWubUYy95rppRywP5_yW3F90i9EfS_EvjzZpdE55DEuSJagOxLYR2zL64TKqY0gpopFzyU7Fs2Qg11rkQb6uRa61SGhkqaVIfL1IYLF0soVN2mLJabKxpCCnYP9f7DfpjKi5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816084284</pqid></control><display><type>article</type><title>Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer</title><source>Access via ScienceDirect (Elsevier)</source><creator>Solangi, K.H. ; Amiri, Ahmad ; Luhur, M.R. ; Ghavimi, Soheila Ali Akbari ; Zubir, Mohd Nashrul Mohd ; Kazi, S.N. ; Badarudin, A.</creator><creatorcontrib>Solangi, K.H. ; Amiri, Ahmad ; Luhur, M.R. ; Ghavimi, Soheila Ali Akbari ; Zubir, Mohd Nashrul Mohd ; Kazi, S.N. ; Badarudin, A.</creatorcontrib><description>This research investigated the heat transfer characteristics of propylene glycol-treated graphene nanoplatelet-based water (PGGNP-Water) nanofluid. To reach a stable collide in liquid media, miscible PG was decorated. The PGGNP-Water with specific surface area of 750m2/g used under closed conduit turbulent convective heat transfer inside a circular copper tube was subjected to constant wall heat fluxes 23,870W/m2 and 18,565W/m2. The experiments were conducted for a Reynolds number range of 3900–11,700. The impact of the dispersed nanoparticles concentration on thermal properties, convective heat transfer coefficient, Nusselt number, Friction factor, performance index, pumping power and efficiency of loop are investigated. An enhancement in thermal conductivity of PGGNP was observed in between 20% and 32% compared to base fluid. It was found that the PGGNP-Water has a maximum of 119% higher heat transfer coefficient compared to base fluid at 0.1wt.%. The performance index and pumping power showed the positive effect. The results indicated that both Nusselt number and friction factor of the nanofluid increase with increasing particle volume concentration and Reynolds number. It appears that PGGNP-Water nanofluids can function as working fluids in heat transfer applications and provide good alternatives to conventional working fluids in the thermal fluid systems.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2016.02.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Convective heat transfer ; Fluid dynamics ; Fluid flow ; Fluids ; Friction factor ; Graphene ; Graphene nanoplatelets ; Heat transfer coefficient ; Nanostructure ; Propylene glycol ; Pumping power ; Turbulence ; Turbulent flow</subject><ispartof>International communications in heat and mass transfer, 2016-04, Vol.73, p.43-53</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-5cf40dd01ef893007873c6a0902ffeb6953e39cb0df0b652b8b7c3c25bec25333</citedby><cites>FETCH-LOGICAL-c375t-5cf40dd01ef893007873c6a0902ffeb6953e39cb0df0b652b8b7c3c25bec25333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.icheatmasstransfer.2016.02.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Solangi, K.H.</creatorcontrib><creatorcontrib>Amiri, Ahmad</creatorcontrib><creatorcontrib>Luhur, M.R.</creatorcontrib><creatorcontrib>Ghavimi, Soheila Ali Akbari</creatorcontrib><creatorcontrib>Zubir, Mohd Nashrul Mohd</creatorcontrib><creatorcontrib>Kazi, S.N.</creatorcontrib><creatorcontrib>Badarudin, A.</creatorcontrib><title>Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer</title><title>International communications in heat and mass transfer</title><description>This research investigated the heat transfer characteristics of propylene glycol-treated graphene nanoplatelet-based water (PGGNP-Water) nanofluid. To reach a stable collide in liquid media, miscible PG was decorated. The PGGNP-Water with specific surface area of 750m2/g used under closed conduit turbulent convective heat transfer inside a circular copper tube was subjected to constant wall heat fluxes 23,870W/m2 and 18,565W/m2. The experiments were conducted for a Reynolds number range of 3900–11,700. The impact of the dispersed nanoparticles concentration on thermal properties, convective heat transfer coefficient, Nusselt number, Friction factor, performance index, pumping power and efficiency of loop are investigated. An enhancement in thermal conductivity of PGGNP was observed in between 20% and 32% compared to base fluid. It was found that the PGGNP-Water has a maximum of 119% higher heat transfer coefficient compared to base fluid at 0.1wt.%. The performance index and pumping power showed the positive effect. The results indicated that both Nusselt number and friction factor of the nanofluid increase with increasing particle volume concentration and Reynolds number. It appears that PGGNP-Water nanofluids can function as working fluids in heat transfer applications and provide good alternatives to conventional working fluids in the thermal fluid systems.</description><subject>Convective heat transfer</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Friction factor</subject><subject>Graphene</subject><subject>Graphene nanoplatelets</subject><subject>Heat transfer coefficient</subject><subject>Nanostructure</subject><subject>Propylene glycol</subject><subject>Pumping power</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUcFu1DAUtCoqdSn9Bx97SXiON4lzA1WFgir1AmfLcZ53vfLawXZW7K_wtTgsnHrhYksz783TzBByz6BmwLr3h9rqPap8VCnlqHwyGOumMDU0NQC_Ihsm-qEC1os3ZAM9bys2cH5D3qZ0AAAmmNiQX48_Z4z2iD4rR60_Ycp2p7INngZD8x7pHMN8duiR7txZB1flWO7iRHdRzfsV98qH2RXMYU7UhPhnD_1eeY2r9CqlXUhlSQc_LTbTvMRxcStXkBPqbE9IV0P0n5t35Nool_Du739Lvn96_PbwVD2_fP7y8PG50rxvc9Vqs4VpAoZGDBygFz3XnYIBGmNw7IaWIx_0CJOBsWubUYy95rppRywP5_yW3F90i9EfS_EvjzZpdE55DEuSJagOxLYR2zL64TKqY0gpopFzyU7Fs2Qg11rkQb6uRa61SGhkqaVIfL1IYLF0soVN2mLJabKxpCCnYP9f7DfpjKi5</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Solangi, K.H.</creator><creator>Amiri, Ahmad</creator><creator>Luhur, M.R.</creator><creator>Ghavimi, Soheila Ali Akbari</creator><creator>Zubir, Mohd Nashrul Mohd</creator><creator>Kazi, S.N.</creator><creator>Badarudin, A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201604</creationdate><title>Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer</title><author>Solangi, K.H. ; Amiri, Ahmad ; Luhur, M.R. ; Ghavimi, Soheila Ali Akbari ; Zubir, Mohd Nashrul Mohd ; Kazi, S.N. ; Badarudin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-5cf40dd01ef893007873c6a0902ffeb6953e39cb0df0b652b8b7c3c25bec25333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convective heat transfer</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Friction factor</topic><topic>Graphene</topic><topic>Graphene nanoplatelets</topic><topic>Heat transfer coefficient</topic><topic>Nanostructure</topic><topic>Propylene glycol</topic><topic>Pumping power</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solangi, K.H.</creatorcontrib><creatorcontrib>Amiri, Ahmad</creatorcontrib><creatorcontrib>Luhur, M.R.</creatorcontrib><creatorcontrib>Ghavimi, Soheila Ali Akbari</creatorcontrib><creatorcontrib>Zubir, Mohd Nashrul Mohd</creatorcontrib><creatorcontrib>Kazi, S.N.</creatorcontrib><creatorcontrib>Badarudin, A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solangi, K.H.</au><au>Amiri, Ahmad</au><au>Luhur, M.R.</au><au>Ghavimi, Soheila Ali Akbari</au><au>Zubir, Mohd Nashrul Mohd</au><au>Kazi, S.N.</au><au>Badarudin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2016-04</date><risdate>2016</risdate><volume>73</volume><spage>43</spage><epage>53</epage><pages>43-53</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><abstract>This research investigated the heat transfer characteristics of propylene glycol-treated graphene nanoplatelet-based water (PGGNP-Water) nanofluid. To reach a stable collide in liquid media, miscible PG was decorated. The PGGNP-Water with specific surface area of 750m2/g used under closed conduit turbulent convective heat transfer inside a circular copper tube was subjected to constant wall heat fluxes 23,870W/m2 and 18,565W/m2. The experiments were conducted for a Reynolds number range of 3900–11,700. The impact of the dispersed nanoparticles concentration on thermal properties, convective heat transfer coefficient, Nusselt number, Friction factor, performance index, pumping power and efficiency of loop are investigated. An enhancement in thermal conductivity of PGGNP was observed in between 20% and 32% compared to base fluid. It was found that the PGGNP-Water has a maximum of 119% higher heat transfer coefficient compared to base fluid at 0.1wt.%. The performance index and pumping power showed the positive effect. The results indicated that both Nusselt number and friction factor of the nanofluid increase with increasing particle volume concentration and Reynolds number. It appears that PGGNP-Water nanofluids can function as working fluids in heat transfer applications and provide good alternatives to conventional working fluids in the thermal fluid systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2016.02.003</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1933 |
ispartof | International communications in heat and mass transfer, 2016-04, Vol.73, p.43-53 |
issn | 0735-1933 1879-0178 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816084284 |
source | Access via ScienceDirect (Elsevier) |
subjects | Convective heat transfer Fluid dynamics Fluid flow Fluids Friction factor Graphene Graphene nanoplatelets Heat transfer coefficient Nanostructure Propylene glycol Pumping power Turbulence Turbulent flow |
title | Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20of%20the%20propylene%20glycol-treated%20graphene%20nanoplatelets%20for%20the%20enhancement%20of%20closed%20conduit%20turbulent%20convective%20heat%20transfer&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Solangi,%20K.H.&rft.date=2016-04&rft.volume=73&rft.spage=43&rft.epage=53&rft.pages=43-53&rft.issn=0735-1933&rft.eissn=1879-0178&rft_id=info:doi/10.1016/j.icheatmasstransfer.2016.02.003&rft_dat=%3Cproquest_cross%3E1816084284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816084284&rft_id=info:pmid/&rft_els_id=S0735193316300409&rfr_iscdi=true |