Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer

This research investigated the heat transfer characteristics of propylene glycol-treated graphene nanoplatelet-based water (PGGNP-Water) nanofluid. To reach a stable collide in liquid media, miscible PG was decorated. The PGGNP-Water with specific surface area of 750m2/g used under closed conduit tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International communications in heat and mass transfer 2016-04, Vol.73, p.43-53
Hauptverfasser: Solangi, K.H., Amiri, Ahmad, Luhur, M.R., Ghavimi, Soheila Ali Akbari, Zubir, Mohd Nashrul Mohd, Kazi, S.N., Badarudin, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue
container_start_page 43
container_title International communications in heat and mass transfer
container_volume 73
creator Solangi, K.H.
Amiri, Ahmad
Luhur, M.R.
Ghavimi, Soheila Ali Akbari
Zubir, Mohd Nashrul Mohd
Kazi, S.N.
Badarudin, A.
description This research investigated the heat transfer characteristics of propylene glycol-treated graphene nanoplatelet-based water (PGGNP-Water) nanofluid. To reach a stable collide in liquid media, miscible PG was decorated. The PGGNP-Water with specific surface area of 750m2/g used under closed conduit turbulent convective heat transfer inside a circular copper tube was subjected to constant wall heat fluxes 23,870W/m2 and 18,565W/m2. The experiments were conducted for a Reynolds number range of 3900–11,700. The impact of the dispersed nanoparticles concentration on thermal properties, convective heat transfer coefficient, Nusselt number, Friction factor, performance index, pumping power and efficiency of loop are investigated. An enhancement in thermal conductivity of PGGNP was observed in between 20% and 32% compared to base fluid. It was found that the PGGNP-Water has a maximum of 119% higher heat transfer coefficient compared to base fluid at 0.1wt.%. The performance index and pumping power showed the positive effect. The results indicated that both Nusselt number and friction factor of the nanofluid increase with increasing particle volume concentration and Reynolds number. It appears that PGGNP-Water nanofluids can function as working fluids in heat transfer applications and provide good alternatives to conventional working fluids in the thermal fluid systems.
doi_str_mv 10.1016/j.icheatmasstransfer.2016.02.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816084284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193316300409</els_id><sourcerecordid>1816084284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-5cf40dd01ef893007873c6a0902ffeb6953e39cb0df0b652b8b7c3c25bec25333</originalsourceid><addsrcrecordid>eNqNUcFu1DAUtCoqdSn9Bx97SXiON4lzA1WFgir1AmfLcZ53vfLawXZW7K_wtTgsnHrhYksz783TzBByz6BmwLr3h9rqPap8VCnlqHwyGOumMDU0NQC_Ihsm-qEC1os3ZAM9bys2cH5D3qZ0AAAmmNiQX48_Z4z2iD4rR60_Ycp2p7INngZD8x7pHMN8duiR7txZB1flWO7iRHdRzfsV98qH2RXMYU7UhPhnD_1eeY2r9CqlXUhlSQc_LTbTvMRxcStXkBPqbE9IV0P0n5t35Nool_Du739Lvn96_PbwVD2_fP7y8PG50rxvc9Vqs4VpAoZGDBygFz3XnYIBGmNw7IaWIx_0CJOBsWubUYy95rppRywP5_yW3F90i9EfS_EvjzZpdE55DEuSJagOxLYR2zL64TKqY0gpopFzyU7Fs2Qg11rkQb6uRa61SGhkqaVIfL1IYLF0soVN2mLJabKxpCCnYP9f7DfpjKi5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816084284</pqid></control><display><type>article</type><title>Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer</title><source>Access via ScienceDirect (Elsevier)</source><creator>Solangi, K.H. ; Amiri, Ahmad ; Luhur, M.R. ; Ghavimi, Soheila Ali Akbari ; Zubir, Mohd Nashrul Mohd ; Kazi, S.N. ; Badarudin, A.</creator><creatorcontrib>Solangi, K.H. ; Amiri, Ahmad ; Luhur, M.R. ; Ghavimi, Soheila Ali Akbari ; Zubir, Mohd Nashrul Mohd ; Kazi, S.N. ; Badarudin, A.</creatorcontrib><description>This research investigated the heat transfer characteristics of propylene glycol-treated graphene nanoplatelet-based water (PGGNP-Water) nanofluid. To reach a stable collide in liquid media, miscible PG was decorated. The PGGNP-Water with specific surface area of 750m2/g used under closed conduit turbulent convective heat transfer inside a circular copper tube was subjected to constant wall heat fluxes 23,870W/m2 and 18,565W/m2. The experiments were conducted for a Reynolds number range of 3900–11,700. The impact of the dispersed nanoparticles concentration on thermal properties, convective heat transfer coefficient, Nusselt number, Friction factor, performance index, pumping power and efficiency of loop are investigated. An enhancement in thermal conductivity of PGGNP was observed in between 20% and 32% compared to base fluid. It was found that the PGGNP-Water has a maximum of 119% higher heat transfer coefficient compared to base fluid at 0.1wt.%. The performance index and pumping power showed the positive effect. The results indicated that both Nusselt number and friction factor of the nanofluid increase with increasing particle volume concentration and Reynolds number. It appears that PGGNP-Water nanofluids can function as working fluids in heat transfer applications and provide good alternatives to conventional working fluids in the thermal fluid systems.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2016.02.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Convective heat transfer ; Fluid dynamics ; Fluid flow ; Fluids ; Friction factor ; Graphene ; Graphene nanoplatelets ; Heat transfer coefficient ; Nanostructure ; Propylene glycol ; Pumping power ; Turbulence ; Turbulent flow</subject><ispartof>International communications in heat and mass transfer, 2016-04, Vol.73, p.43-53</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-5cf40dd01ef893007873c6a0902ffeb6953e39cb0df0b652b8b7c3c25bec25333</citedby><cites>FETCH-LOGICAL-c375t-5cf40dd01ef893007873c6a0902ffeb6953e39cb0df0b652b8b7c3c25bec25333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.icheatmasstransfer.2016.02.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Solangi, K.H.</creatorcontrib><creatorcontrib>Amiri, Ahmad</creatorcontrib><creatorcontrib>Luhur, M.R.</creatorcontrib><creatorcontrib>Ghavimi, Soheila Ali Akbari</creatorcontrib><creatorcontrib>Zubir, Mohd Nashrul Mohd</creatorcontrib><creatorcontrib>Kazi, S.N.</creatorcontrib><creatorcontrib>Badarudin, A.</creatorcontrib><title>Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer</title><title>International communications in heat and mass transfer</title><description>This research investigated the heat transfer characteristics of propylene glycol-treated graphene nanoplatelet-based water (PGGNP-Water) nanofluid. To reach a stable collide in liquid media, miscible PG was decorated. The PGGNP-Water with specific surface area of 750m2/g used under closed conduit turbulent convective heat transfer inside a circular copper tube was subjected to constant wall heat fluxes 23,870W/m2 and 18,565W/m2. The experiments were conducted for a Reynolds number range of 3900–11,700. The impact of the dispersed nanoparticles concentration on thermal properties, convective heat transfer coefficient, Nusselt number, Friction factor, performance index, pumping power and efficiency of loop are investigated. An enhancement in thermal conductivity of PGGNP was observed in between 20% and 32% compared to base fluid. It was found that the PGGNP-Water has a maximum of 119% higher heat transfer coefficient compared to base fluid at 0.1wt.%. The performance index and pumping power showed the positive effect. The results indicated that both Nusselt number and friction factor of the nanofluid increase with increasing particle volume concentration and Reynolds number. It appears that PGGNP-Water nanofluids can function as working fluids in heat transfer applications and provide good alternatives to conventional working fluids in the thermal fluid systems.</description><subject>Convective heat transfer</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Friction factor</subject><subject>Graphene</subject><subject>Graphene nanoplatelets</subject><subject>Heat transfer coefficient</subject><subject>Nanostructure</subject><subject>Propylene glycol</subject><subject>Pumping power</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUcFu1DAUtCoqdSn9Bx97SXiON4lzA1WFgir1AmfLcZ53vfLawXZW7K_wtTgsnHrhYksz783TzBByz6BmwLr3h9rqPap8VCnlqHwyGOumMDU0NQC_Ihsm-qEC1os3ZAM9bys2cH5D3qZ0AAAmmNiQX48_Z4z2iD4rR60_Ycp2p7INngZD8x7pHMN8duiR7txZB1flWO7iRHdRzfsV98qH2RXMYU7UhPhnD_1eeY2r9CqlXUhlSQc_LTbTvMRxcStXkBPqbE9IV0P0n5t35Nool_Du739Lvn96_PbwVD2_fP7y8PG50rxvc9Vqs4VpAoZGDBygFz3XnYIBGmNw7IaWIx_0CJOBsWubUYy95rppRywP5_yW3F90i9EfS_EvjzZpdE55DEuSJagOxLYR2zL64TKqY0gpopFzyU7Fs2Qg11rkQb6uRa61SGhkqaVIfL1IYLF0soVN2mLJabKxpCCnYP9f7DfpjKi5</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Solangi, K.H.</creator><creator>Amiri, Ahmad</creator><creator>Luhur, M.R.</creator><creator>Ghavimi, Soheila Ali Akbari</creator><creator>Zubir, Mohd Nashrul Mohd</creator><creator>Kazi, S.N.</creator><creator>Badarudin, A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201604</creationdate><title>Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer</title><author>Solangi, K.H. ; Amiri, Ahmad ; Luhur, M.R. ; Ghavimi, Soheila Ali Akbari ; Zubir, Mohd Nashrul Mohd ; Kazi, S.N. ; Badarudin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-5cf40dd01ef893007873c6a0902ffeb6953e39cb0df0b652b8b7c3c25bec25333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convective heat transfer</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Friction factor</topic><topic>Graphene</topic><topic>Graphene nanoplatelets</topic><topic>Heat transfer coefficient</topic><topic>Nanostructure</topic><topic>Propylene glycol</topic><topic>Pumping power</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solangi, K.H.</creatorcontrib><creatorcontrib>Amiri, Ahmad</creatorcontrib><creatorcontrib>Luhur, M.R.</creatorcontrib><creatorcontrib>Ghavimi, Soheila Ali Akbari</creatorcontrib><creatorcontrib>Zubir, Mohd Nashrul Mohd</creatorcontrib><creatorcontrib>Kazi, S.N.</creatorcontrib><creatorcontrib>Badarudin, A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solangi, K.H.</au><au>Amiri, Ahmad</au><au>Luhur, M.R.</au><au>Ghavimi, Soheila Ali Akbari</au><au>Zubir, Mohd Nashrul Mohd</au><au>Kazi, S.N.</au><au>Badarudin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2016-04</date><risdate>2016</risdate><volume>73</volume><spage>43</spage><epage>53</epage><pages>43-53</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><abstract>This research investigated the heat transfer characteristics of propylene glycol-treated graphene nanoplatelet-based water (PGGNP-Water) nanofluid. To reach a stable collide in liquid media, miscible PG was decorated. The PGGNP-Water with specific surface area of 750m2/g used under closed conduit turbulent convective heat transfer inside a circular copper tube was subjected to constant wall heat fluxes 23,870W/m2 and 18,565W/m2. The experiments were conducted for a Reynolds number range of 3900–11,700. The impact of the dispersed nanoparticles concentration on thermal properties, convective heat transfer coefficient, Nusselt number, Friction factor, performance index, pumping power and efficiency of loop are investigated. An enhancement in thermal conductivity of PGGNP was observed in between 20% and 32% compared to base fluid. It was found that the PGGNP-Water has a maximum of 119% higher heat transfer coefficient compared to base fluid at 0.1wt.%. The performance index and pumping power showed the positive effect. The results indicated that both Nusselt number and friction factor of the nanofluid increase with increasing particle volume concentration and Reynolds number. It appears that PGGNP-Water nanofluids can function as working fluids in heat transfer applications and provide good alternatives to conventional working fluids in the thermal fluid systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2016.02.003</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-1933
ispartof International communications in heat and mass transfer, 2016-04, Vol.73, p.43-53
issn 0735-1933
1879-0178
language eng
recordid cdi_proquest_miscellaneous_1816084284
source Access via ScienceDirect (Elsevier)
subjects Convective heat transfer
Fluid dynamics
Fluid flow
Fluids
Friction factor
Graphene
Graphene nanoplatelets
Heat transfer coefficient
Nanostructure
Propylene glycol
Pumping power
Turbulence
Turbulent flow
title Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20of%20the%20propylene%20glycol-treated%20graphene%20nanoplatelets%20for%20the%20enhancement%20of%20closed%20conduit%20turbulent%20convective%20heat%20transfer&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Solangi,%20K.H.&rft.date=2016-04&rft.volume=73&rft.spage=43&rft.epage=53&rft.pages=43-53&rft.issn=0735-1933&rft.eissn=1879-0178&rft_id=info:doi/10.1016/j.icheatmasstransfer.2016.02.003&rft_dat=%3Cproquest_cross%3E1816084284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816084284&rft_id=info:pmid/&rft_els_id=S0735193316300409&rfr_iscdi=true