Bayesian inference of Weibull distribution based on left truncated and right censored data

This article deals with the Bayesian inference of the unknown parameters of the Weibull distribution based on the left truncated and right censored data. It is assumed that the scale parameter of the Weibull distribution has a gamma prior. The shape parameter may be known or unknown. If the shape pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2016-07, Vol.99, p.38-50
Hauptverfasser: Kundu, Debasis, Mitra, Debanjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue
container_start_page 38
container_title Computational statistics & data analysis
container_volume 99
creator Kundu, Debasis
Mitra, Debanjan
description This article deals with the Bayesian inference of the unknown parameters of the Weibull distribution based on the left truncated and right censored data. It is assumed that the scale parameter of the Weibull distribution has a gamma prior. The shape parameter may be known or unknown. If the shape parameter is unknown, it is assumed that it has a very general log-concave prior distribution. When the shape parameter is unknown, the closed form expression of the Bayes estimates cannot be obtained. We propose to use Gibbs sampling procedure to compute the Bayes estimates and the associated highest posterior density credible intervals. Two data sets, one simulated and one real life, have been analyzed to show the effectiveness of the proposed method, and the performances are quite satisfactory. We further develop posterior predictive density of an item still in use. Based on the predictive density we provide predictive survival probability at a certain point along with the associated highest posterior density credible interval and also the expected number of failures in a given interval.
doi_str_mv 10.1016/j.csda.2016.01.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816083704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947316000025</els_id><sourcerecordid>1816083704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-613de1e43194596e1ddbd74901d64fd9afb9fb00cf5545c53ed68fa4ffc10a6d3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A55y9NI6adIv8KKLX7DgRRG8hDSZaJZuuyapsP-9KevZ0zzevDcwP0IuGeQMWHW9yXUwKi-SzoHlAOyILFhTF1nNy-KYLNKizlpR81NyFsIGAApRNwvycaf2GJwaqBssehw00tHSd3Td1PfUuBB9ktGNA-1UQEOT6NFGGv00aBWTowZDvfv8ilTjEEafLKOiOicnVvUBL_7mkrw93L-unrL1y-Pz6nadac55zCrGDTIUnLWibCtkxnSmFi0wUwlrWmW71nYA2palKHXJ0VSNVcJazUBVhi_J1eHuzo_fE4Yoty5o7Hs14DgFyRpWQcNrEClaHKLajyF4tHLn3Vb5vWQgZ5ByI2eQcgYpgckEMpVuDiVMT_w49DJoN4MyzqOO0ozuv_ovagl9bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816083704</pqid></control><display><type>article</type><title>Bayesian inference of Weibull distribution based on left truncated and right censored data</title><source>Elsevier ScienceDirect Journals</source><creator>Kundu, Debasis ; Mitra, Debanjan</creator><creatorcontrib>Kundu, Debasis ; Mitra, Debanjan</creatorcontrib><description>This article deals with the Bayesian inference of the unknown parameters of the Weibull distribution based on the left truncated and right censored data. It is assumed that the scale parameter of the Weibull distribution has a gamma prior. The shape parameter may be known or unknown. If the shape parameter is unknown, it is assumed that it has a very general log-concave prior distribution. When the shape parameter is unknown, the closed form expression of the Bayes estimates cannot be obtained. We propose to use Gibbs sampling procedure to compute the Bayes estimates and the associated highest posterior density credible intervals. Two data sets, one simulated and one real life, have been analyzed to show the effectiveness of the proposed method, and the performances are quite satisfactory. We further develop posterior predictive density of an item still in use. Based on the predictive density we provide predictive survival probability at a certain point along with the associated highest posterior density credible interval and also the expected number of failures in a given interval.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2016.01.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bayesian analysis ; Credible intervals ; Density ; Estimates ; Fisher information matrix ; Gibbs sampling ; Inference ; Intervals ; Maximum likelihood estimators ; Posterior analysis ; Prior distribution ; Statistics ; Survival ; Weibull distribution</subject><ispartof>Computational statistics &amp; data analysis, 2016-07, Vol.99, p.38-50</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-613de1e43194596e1ddbd74901d64fd9afb9fb00cf5545c53ed68fa4ffc10a6d3</citedby><cites>FETCH-LOGICAL-c333t-613de1e43194596e1ddbd74901d64fd9afb9fb00cf5545c53ed68fa4ffc10a6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947316000025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kundu, Debasis</creatorcontrib><creatorcontrib>Mitra, Debanjan</creatorcontrib><title>Bayesian inference of Weibull distribution based on left truncated and right censored data</title><title>Computational statistics &amp; data analysis</title><description>This article deals with the Bayesian inference of the unknown parameters of the Weibull distribution based on the left truncated and right censored data. It is assumed that the scale parameter of the Weibull distribution has a gamma prior. The shape parameter may be known or unknown. If the shape parameter is unknown, it is assumed that it has a very general log-concave prior distribution. When the shape parameter is unknown, the closed form expression of the Bayes estimates cannot be obtained. We propose to use Gibbs sampling procedure to compute the Bayes estimates and the associated highest posterior density credible intervals. Two data sets, one simulated and one real life, have been analyzed to show the effectiveness of the proposed method, and the performances are quite satisfactory. We further develop posterior predictive density of an item still in use. Based on the predictive density we provide predictive survival probability at a certain point along with the associated highest posterior density credible interval and also the expected number of failures in a given interval.</description><subject>Bayesian analysis</subject><subject>Credible intervals</subject><subject>Density</subject><subject>Estimates</subject><subject>Fisher information matrix</subject><subject>Gibbs sampling</subject><subject>Inference</subject><subject>Intervals</subject><subject>Maximum likelihood estimators</subject><subject>Posterior analysis</subject><subject>Prior distribution</subject><subject>Statistics</subject><subject>Survival</subject><subject>Weibull distribution</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-A55y9NI6adIv8KKLX7DgRRG8hDSZaJZuuyapsP-9KevZ0zzevDcwP0IuGeQMWHW9yXUwKi-SzoHlAOyILFhTF1nNy-KYLNKizlpR81NyFsIGAApRNwvycaf2GJwaqBssehw00tHSd3Td1PfUuBB9ktGNA-1UQEOT6NFGGv00aBWTowZDvfv8ilTjEEafLKOiOicnVvUBL_7mkrw93L-unrL1y-Pz6nadac55zCrGDTIUnLWibCtkxnSmFi0wUwlrWmW71nYA2palKHXJ0VSNVcJazUBVhi_J1eHuzo_fE4Yoty5o7Hs14DgFyRpWQcNrEClaHKLajyF4tHLn3Vb5vWQgZ5ByI2eQcgYpgckEMpVuDiVMT_w49DJoN4MyzqOO0ozuv_ovagl9bg</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Kundu, Debasis</creator><creator>Mitra, Debanjan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201607</creationdate><title>Bayesian inference of Weibull distribution based on left truncated and right censored data</title><author>Kundu, Debasis ; Mitra, Debanjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-613de1e43194596e1ddbd74901d64fd9afb9fb00cf5545c53ed68fa4ffc10a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bayesian analysis</topic><topic>Credible intervals</topic><topic>Density</topic><topic>Estimates</topic><topic>Fisher information matrix</topic><topic>Gibbs sampling</topic><topic>Inference</topic><topic>Intervals</topic><topic>Maximum likelihood estimators</topic><topic>Posterior analysis</topic><topic>Prior distribution</topic><topic>Statistics</topic><topic>Survival</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kundu, Debasis</creatorcontrib><creatorcontrib>Mitra, Debanjan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kundu, Debasis</au><au>Mitra, Debanjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference of Weibull distribution based on left truncated and right censored data</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2016-07</date><risdate>2016</risdate><volume>99</volume><spage>38</spage><epage>50</epage><pages>38-50</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>This article deals with the Bayesian inference of the unknown parameters of the Weibull distribution based on the left truncated and right censored data. It is assumed that the scale parameter of the Weibull distribution has a gamma prior. The shape parameter may be known or unknown. If the shape parameter is unknown, it is assumed that it has a very general log-concave prior distribution. When the shape parameter is unknown, the closed form expression of the Bayes estimates cannot be obtained. We propose to use Gibbs sampling procedure to compute the Bayes estimates and the associated highest posterior density credible intervals. Two data sets, one simulated and one real life, have been analyzed to show the effectiveness of the proposed method, and the performances are quite satisfactory. We further develop posterior predictive density of an item still in use. Based on the predictive density we provide predictive survival probability at a certain point along with the associated highest posterior density credible interval and also the expected number of failures in a given interval.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2016.01.001</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2016-07, Vol.99, p.38-50
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_1816083704
source Elsevier ScienceDirect Journals
subjects Bayesian analysis
Credible intervals
Density
Estimates
Fisher information matrix
Gibbs sampling
Inference
Intervals
Maximum likelihood estimators
Posterior analysis
Prior distribution
Statistics
Survival
Weibull distribution
title Bayesian inference of Weibull distribution based on left truncated and right censored data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20of%20Weibull%20distribution%20based%20on%20left%20truncated%20and%20right%20censored%20data&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Kundu,%20Debasis&rft.date=2016-07&rft.volume=99&rft.spage=38&rft.epage=50&rft.pages=38-50&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2016.01.001&rft_dat=%3Cproquest_cross%3E1816083704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816083704&rft_id=info:pmid/&rft_els_id=S0167947316000025&rfr_iscdi=true