Dynamic self-assembly of microscale rotors and swimmers

Biological systems often involve the self-assembly of basic components into complex and functioning structures. Artificial systems that mimic such processes can provide a well-controlled setting to explore the principles involved and also synthesize useful micromachines. Our experiments show that im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2016-01, Vol.12 (20), p.4584-4589
Hauptverfasser: Davies Wykes, Megan S, Palacci, Jérémie, Adachi, Takuji, Ristroph, Leif, Zhong, Xiao, Ward, Michael D, Zhang, Jun, Shelley, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4589
container_issue 20
container_start_page 4584
container_title Soft matter
container_volume 12
creator Davies Wykes, Megan S
Palacci, Jérémie
Adachi, Takuji
Ristroph, Leif
Zhong, Xiao
Ward, Michael D
Zhang, Jun
Shelley, Michael J
description Biological systems often involve the self-assembly of basic components into complex and functioning structures. Artificial systems that mimic such processes can provide a well-controlled setting to explore the principles involved and also synthesize useful micromachines. Our experiments show that immotile, but active, components self-assemble into two types of structure that exhibit the fundamental forms of motility: translation and rotation. Specifically, micron-scale metallic rods are designed to induce extensile surface flows in the presence of a chemical fuel; these rods interact with each other and pair up to form either a swimmer or a rotor. Such pairs can transition reversibly between these two configurations, leading to kinetics reminiscent of bacterial run-and-tumble motion.
doi_str_mv 10.1039/c5sm03127c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816080522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790022887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9d0d25b4fe8a781c85528e5bd5d270bbaa515270319131b6089971d5e02d865a3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK1e_AGSowjRmd1sdnOU1C-oeFDBW9jsbiCSbepOi_Tfm9raq6d5GZ55YR7GzhGuEURxYyUFEMiVPWBjVFmW5jrTh_ssPkbshOgTQOgM82M24go5IsCYqel6bkJrE_JdkxoiH-punfRNMixjT9Z0Pon9so-UmLlL6LsNwUc6ZUeN6cif7eaEvd_fvZWP6ezl4am8naVW5LhMCweOyzprvDZKo9VScu1l7aTjCuraGIlySAILFFjnoItCoZMeuNO5NGLCLre9i9h_rTwtq9CS9V1n5r5fUYUahyOQnP-PqgKAc63VgF5t0c2LFH1TLWIbTFxXCNXGaVXK1-dfp-UAX-x6V3Xwbo_-SRQ_CSNvjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790022887</pqid></control><display><type>article</type><title>Dynamic self-assembly of microscale rotors and swimmers</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Davies Wykes, Megan S ; Palacci, Jérémie ; Adachi, Takuji ; Ristroph, Leif ; Zhong, Xiao ; Ward, Michael D ; Zhang, Jun ; Shelley, Michael J</creator><creatorcontrib>Davies Wykes, Megan S ; Palacci, Jérémie ; Adachi, Takuji ; Ristroph, Leif ; Zhong, Xiao ; Ward, Michael D ; Zhang, Jun ; Shelley, Michael J</creatorcontrib><description>Biological systems often involve the self-assembly of basic components into complex and functioning structures. Artificial systems that mimic such processes can provide a well-controlled setting to explore the principles involved and also synthesize useful micromachines. Our experiments show that immotile, but active, components self-assemble into two types of structure that exhibit the fundamental forms of motility: translation and rotation. Specifically, micron-scale metallic rods are designed to induce extensile surface flows in the presence of a chemical fuel; these rods interact with each other and pair up to form either a swimmer or a rotor. Such pairs can transition reversibly between these two configurations, leading to kinetics reminiscent of bacterial run-and-tumble motion.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c5sm03127c</identifier><identifier>PMID: 27121100</identifier><language>eng</language><publisher>England</publisher><subject>Bacteria ; Chemical fuels ; Dynamical systems ; Dynamics ; Rods ; Rotors ; Self assembly ; Translations</subject><ispartof>Soft matter, 2016-01, Vol.12 (20), p.4584-4589</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-9d0d25b4fe8a781c85528e5bd5d270bbaa515270319131b6089971d5e02d865a3</citedby><cites>FETCH-LOGICAL-c361t-9d0d25b4fe8a781c85528e5bd5d270bbaa515270319131b6089971d5e02d865a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27121100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davies Wykes, Megan S</creatorcontrib><creatorcontrib>Palacci, Jérémie</creatorcontrib><creatorcontrib>Adachi, Takuji</creatorcontrib><creatorcontrib>Ristroph, Leif</creatorcontrib><creatorcontrib>Zhong, Xiao</creatorcontrib><creatorcontrib>Ward, Michael D</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Shelley, Michael J</creatorcontrib><title>Dynamic self-assembly of microscale rotors and swimmers</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Biological systems often involve the self-assembly of basic components into complex and functioning structures. Artificial systems that mimic such processes can provide a well-controlled setting to explore the principles involved and also synthesize useful micromachines. Our experiments show that immotile, but active, components self-assemble into two types of structure that exhibit the fundamental forms of motility: translation and rotation. Specifically, micron-scale metallic rods are designed to induce extensile surface flows in the presence of a chemical fuel; these rods interact with each other and pair up to form either a swimmer or a rotor. Such pairs can transition reversibly between these two configurations, leading to kinetics reminiscent of bacterial run-and-tumble motion.</description><subject>Bacteria</subject><subject>Chemical fuels</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Rods</subject><subject>Rotors</subject><subject>Self assembly</subject><subject>Translations</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRbK1e_AGSowjRmd1sdnOU1C-oeFDBW9jsbiCSbepOi_Tfm9raq6d5GZ55YR7GzhGuEURxYyUFEMiVPWBjVFmW5jrTh_ssPkbshOgTQOgM82M24go5IsCYqel6bkJrE_JdkxoiH-punfRNMixjT9Z0Pon9so-UmLlL6LsNwUc6ZUeN6cif7eaEvd_fvZWP6ezl4am8naVW5LhMCweOyzprvDZKo9VScu1l7aTjCuraGIlySAILFFjnoItCoZMeuNO5NGLCLre9i9h_rTwtq9CS9V1n5r5fUYUahyOQnP-PqgKAc63VgF5t0c2LFH1TLWIbTFxXCNXGaVXK1-dfp-UAX-x6V3Xwbo_-SRQ_CSNvjQ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Davies Wykes, Megan S</creator><creator>Palacci, Jérémie</creator><creator>Adachi, Takuji</creator><creator>Ristroph, Leif</creator><creator>Zhong, Xiao</creator><creator>Ward, Michael D</creator><creator>Zhang, Jun</creator><creator>Shelley, Michael J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Dynamic self-assembly of microscale rotors and swimmers</title><author>Davies Wykes, Megan S ; Palacci, Jérémie ; Adachi, Takuji ; Ristroph, Leif ; Zhong, Xiao ; Ward, Michael D ; Zhang, Jun ; Shelley, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9d0d25b4fe8a781c85528e5bd5d270bbaa515270319131b6089971d5e02d865a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacteria</topic><topic>Chemical fuels</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Rods</topic><topic>Rotors</topic><topic>Self assembly</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davies Wykes, Megan S</creatorcontrib><creatorcontrib>Palacci, Jérémie</creatorcontrib><creatorcontrib>Adachi, Takuji</creatorcontrib><creatorcontrib>Ristroph, Leif</creatorcontrib><creatorcontrib>Zhong, Xiao</creatorcontrib><creatorcontrib>Ward, Michael D</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Shelley, Michael J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies Wykes, Megan S</au><au>Palacci, Jérémie</au><au>Adachi, Takuji</au><au>Ristroph, Leif</au><au>Zhong, Xiao</au><au>Ward, Michael D</au><au>Zhang, Jun</au><au>Shelley, Michael J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic self-assembly of microscale rotors and swimmers</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>12</volume><issue>20</issue><spage>4584</spage><epage>4589</epage><pages>4584-4589</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Biological systems often involve the self-assembly of basic components into complex and functioning structures. Artificial systems that mimic such processes can provide a well-controlled setting to explore the principles involved and also synthesize useful micromachines. Our experiments show that immotile, but active, components self-assemble into two types of structure that exhibit the fundamental forms of motility: translation and rotation. Specifically, micron-scale metallic rods are designed to induce extensile surface flows in the presence of a chemical fuel; these rods interact with each other and pair up to form either a swimmer or a rotor. Such pairs can transition reversibly between these two configurations, leading to kinetics reminiscent of bacterial run-and-tumble motion.</abstract><cop>England</cop><pmid>27121100</pmid><doi>10.1039/c5sm03127c</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2016-01, Vol.12 (20), p.4584-4589
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_1816080522
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Bacteria
Chemical fuels
Dynamical systems
Dynamics
Rods
Rotors
Self assembly
Translations
title Dynamic self-assembly of microscale rotors and swimmers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20self-assembly%20of%20microscale%20rotors%20and%20swimmers&rft.jtitle=Soft%20matter&rft.au=Davies%20Wykes,%20Megan%20S&rft.date=2016-01-01&rft.volume=12&rft.issue=20&rft.spage=4584&rft.epage=4589&rft.pages=4584-4589&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c5sm03127c&rft_dat=%3Cproquest_cross%3E1790022887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790022887&rft_id=info:pmid/27121100&rfr_iscdi=true