Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior
The purpose of this work is the development of a two-scale phase-field-based computational model for coupled microstructure evolution and macroscopic mechanical material behavior. To this end, the mechanical behavior of the macroscopic continuum is based on a model for each of its material elements...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2016-06, Vol.305, p.89-110 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | |
container_start_page | 89 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 305 |
creator | Kochmann, Julian Wulfinghoff, Stephan Reese, Stefanie Mianroodi, Jaber Rezaei Svendsen, Bob |
description | The purpose of this work is the development of a two-scale phase-field-based computational model for coupled microstructure evolution and macroscopic mechanical material behavior. To this end, the mechanical behavior of the macroscopic continuum is based on a model for each of its material elements or points as a unit cell (UC) whose average properties determine those of the corresponding material point. The UC model itself is based on materially inhomogeneous elasticity, with material inhomogeneity resulting from microstructure evolution in the UC, driven in particular by stress relaxation. Since the focus of the current work is on computational aspects, microstructure evolution is restricted here for simplicity to bulk structural rearrangement (e.g., austenite–martensite transformation). Consequently, the corresponding phase fields are non-conservative. As well for simplicity, the current formulation is restricted to geometric linearity. The algorithmic formulation and numerical solution of the microscopic initial–boundary-value problem (IBVP) for mechanical equilibrium and relaxational dynamics in the UC is based on Green function and (fast) Fourier transform (FFT) methods. On the other hand, the algorithmic formulation and numerical solution of the macroscopic BVP for quasi-static macroscopic mechanical equilibrium is based on finite element (FE) methods. To demonstrate its capabilities, the current two-scale computational approach is applied in the last part of the work to the modeling and simulation of single- and polycrystalline UCs undergoing structural rearrangement from austenite into multiple martensite variants during loading of the macroscopic continuum. |
doi_str_mv | 10.1016/j.cma.2016.03.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816080449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782516300718</els_id><sourcerecordid>1816080449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-39622cb5795d41acae1ca56d7bf8d550f663ac55cc540bacbd65e000e83e61c03</originalsourceid><addsrcrecordid>eNp9kLFu2zAQhokiBeq4fYBuGrNQJUVRltEpMOwkgIEs7kxQx1NNlxIVUnKQrUPfoG_YJykVZ84t9wP3_Ye7n5CvnOWc8erbKYdO50WSORM5Y_wDWfB6taYFF_UVWTBWSrqqC_mJXMd4YqlqXizIn8OzpxG0w2y3_ff77253oJnuTTYcdUTaWnSGNkmaDHw3TKMere-1yzpv0Nn-Z-bbrJncr6yzEHwcwwTjFBKAZ--mGX5d1-l5Cn6wkPSIwSakwaM-Wx8-k4-tdhG_vPUl-bHbHjb3dP9497C53VMQgo1UrKuigEau1tKUXINGDlpWZtW0tZGStVUlNEgJIEvWaGhMJTE9irXAigMTS3Jz2TsE_zRhHFVnI6Bzukc_RcVrXrGaleU6ofyCzmfHgK0agu10eFGcqTlxdVIpcTUnrphQKfHk-X7xYPrhbDGoCBZ7QGMDwqiMt--4_wOf6Yye</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816080449</pqid></control><display><type>article</type><title>Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kochmann, Julian ; Wulfinghoff, Stephan ; Reese, Stefanie ; Mianroodi, Jaber Rezaei ; Svendsen, Bob</creator><creatorcontrib>Kochmann, Julian ; Wulfinghoff, Stephan ; Reese, Stefanie ; Mianroodi, Jaber Rezaei ; Svendsen, Bob</creatorcontrib><description>The purpose of this work is the development of a two-scale phase-field-based computational model for coupled microstructure evolution and macroscopic mechanical material behavior. To this end, the mechanical behavior of the macroscopic continuum is based on a model for each of its material elements or points as a unit cell (UC) whose average properties determine those of the corresponding material point. The UC model itself is based on materially inhomogeneous elasticity, with material inhomogeneity resulting from microstructure evolution in the UC, driven in particular by stress relaxation. Since the focus of the current work is on computational aspects, microstructure evolution is restricted here for simplicity to bulk structural rearrangement (e.g., austenite–martensite transformation). Consequently, the corresponding phase fields are non-conservative. As well for simplicity, the current formulation is restricted to geometric linearity. The algorithmic formulation and numerical solution of the microscopic initial–boundary-value problem (IBVP) for mechanical equilibrium and relaxational dynamics in the UC is based on Green function and (fast) Fourier transform (FFT) methods. On the other hand, the algorithmic formulation and numerical solution of the macroscopic BVP for quasi-static macroscopic mechanical equilibrium is based on finite element (FE) methods. To demonstrate its capabilities, the current two-scale computational approach is applied in the last part of the work to the modeling and simulation of single- and polycrystalline UCs undergoing structural rearrangement from austenite into multiple martensite variants during loading of the macroscopic continuum.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2016.03.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Computation ; Computer simulation ; Continuums ; Evolution ; FE–FFT ; Fourier ; Green function ; Mathematical analysis ; Mathematical models ; Microstructure ; Phase field ; Two-scale</subject><ispartof>Computer methods in applied mechanics and engineering, 2016-06, Vol.305, p.89-110</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-39622cb5795d41acae1ca56d7bf8d550f663ac55cc540bacbd65e000e83e61c03</citedby><cites>FETCH-LOGICAL-c330t-39622cb5795d41acae1ca56d7bf8d550f663ac55cc540bacbd65e000e83e61c03</cites><orcidid>0000-0002-2440-5569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2016.03.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kochmann, Julian</creatorcontrib><creatorcontrib>Wulfinghoff, Stephan</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><creatorcontrib>Mianroodi, Jaber Rezaei</creatorcontrib><creatorcontrib>Svendsen, Bob</creatorcontrib><title>Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior</title><title>Computer methods in applied mechanics and engineering</title><description>The purpose of this work is the development of a two-scale phase-field-based computational model for coupled microstructure evolution and macroscopic mechanical material behavior. To this end, the mechanical behavior of the macroscopic continuum is based on a model for each of its material elements or points as a unit cell (UC) whose average properties determine those of the corresponding material point. The UC model itself is based on materially inhomogeneous elasticity, with material inhomogeneity resulting from microstructure evolution in the UC, driven in particular by stress relaxation. Since the focus of the current work is on computational aspects, microstructure evolution is restricted here for simplicity to bulk structural rearrangement (e.g., austenite–martensite transformation). Consequently, the corresponding phase fields are non-conservative. As well for simplicity, the current formulation is restricted to geometric linearity. The algorithmic formulation and numerical solution of the microscopic initial–boundary-value problem (IBVP) for mechanical equilibrium and relaxational dynamics in the UC is based on Green function and (fast) Fourier transform (FFT) methods. On the other hand, the algorithmic formulation and numerical solution of the macroscopic BVP for quasi-static macroscopic mechanical equilibrium is based on finite element (FE) methods. To demonstrate its capabilities, the current two-scale computational approach is applied in the last part of the work to the modeling and simulation of single- and polycrystalline UCs undergoing structural rearrangement from austenite into multiple martensite variants during loading of the macroscopic continuum.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Continuums</subject><subject>Evolution</subject><subject>FE–FFT</subject><subject>Fourier</subject><subject>Green function</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Phase field</subject><subject>Two-scale</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLFu2zAQhokiBeq4fYBuGrNQJUVRltEpMOwkgIEs7kxQx1NNlxIVUnKQrUPfoG_YJykVZ84t9wP3_Ye7n5CvnOWc8erbKYdO50WSORM5Y_wDWfB6taYFF_UVWTBWSrqqC_mJXMd4YqlqXizIn8OzpxG0w2y3_ff77253oJnuTTYcdUTaWnSGNkmaDHw3TKMere-1yzpv0Nn-Z-bbrJncr6yzEHwcwwTjFBKAZ--mGX5d1-l5Cn6wkPSIwSakwaM-Wx8-k4-tdhG_vPUl-bHbHjb3dP9497C53VMQgo1UrKuigEau1tKUXINGDlpWZtW0tZGStVUlNEgJIEvWaGhMJTE9irXAigMTS3Jz2TsE_zRhHFVnI6Bzukc_RcVrXrGaleU6ofyCzmfHgK0agu10eFGcqTlxdVIpcTUnrphQKfHk-X7xYPrhbDGoCBZ7QGMDwqiMt--4_wOf6Yye</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Kochmann, Julian</creator><creator>Wulfinghoff, Stephan</creator><creator>Reese, Stefanie</creator><creator>Mianroodi, Jaber Rezaei</creator><creator>Svendsen, Bob</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2440-5569</orcidid></search><sort><creationdate>20160615</creationdate><title>Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior</title><author>Kochmann, Julian ; Wulfinghoff, Stephan ; Reese, Stefanie ; Mianroodi, Jaber Rezaei ; Svendsen, Bob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-39622cb5795d41acae1ca56d7bf8d550f663ac55cc540bacbd65e000e83e61c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Continuums</topic><topic>Evolution</topic><topic>FE–FFT</topic><topic>Fourier</topic><topic>Green function</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Phase field</topic><topic>Two-scale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kochmann, Julian</creatorcontrib><creatorcontrib>Wulfinghoff, Stephan</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><creatorcontrib>Mianroodi, Jaber Rezaei</creatorcontrib><creatorcontrib>Svendsen, Bob</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kochmann, Julian</au><au>Wulfinghoff, Stephan</au><au>Reese, Stefanie</au><au>Mianroodi, Jaber Rezaei</au><au>Svendsen, Bob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2016-06-15</date><risdate>2016</risdate><volume>305</volume><spage>89</spage><epage>110</epage><pages>89-110</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>The purpose of this work is the development of a two-scale phase-field-based computational model for coupled microstructure evolution and macroscopic mechanical material behavior. To this end, the mechanical behavior of the macroscopic continuum is based on a model for each of its material elements or points as a unit cell (UC) whose average properties determine those of the corresponding material point. The UC model itself is based on materially inhomogeneous elasticity, with material inhomogeneity resulting from microstructure evolution in the UC, driven in particular by stress relaxation. Since the focus of the current work is on computational aspects, microstructure evolution is restricted here for simplicity to bulk structural rearrangement (e.g., austenite–martensite transformation). Consequently, the corresponding phase fields are non-conservative. As well for simplicity, the current formulation is restricted to geometric linearity. The algorithmic formulation and numerical solution of the microscopic initial–boundary-value problem (IBVP) for mechanical equilibrium and relaxational dynamics in the UC is based on Green function and (fast) Fourier transform (FFT) methods. On the other hand, the algorithmic formulation and numerical solution of the macroscopic BVP for quasi-static macroscopic mechanical equilibrium is based on finite element (FE) methods. To demonstrate its capabilities, the current two-scale computational approach is applied in the last part of the work to the modeling and simulation of single- and polycrystalline UCs undergoing structural rearrangement from austenite into multiple martensite variants during loading of the macroscopic continuum.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2016.03.001</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2440-5569</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2016-06, Vol.305, p.89-110 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816080449 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Computation Computer simulation Continuums Evolution FE–FFT Fourier Green function Mathematical analysis Mathematical models Microstructure Phase field Two-scale |
title | Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-scale%20FE%E2%80%93FFT-%20and%20phase-field-based%20computational%20modeling%20of%20bulk%20microstructural%20evolution%20and%20macroscopic%20material%20behavior&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Kochmann,%20Julian&rft.date=2016-06-15&rft.volume=305&rft.spage=89&rft.epage=110&rft.pages=89-110&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2016.03.001&rft_dat=%3Cproquest_cross%3E1816080449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816080449&rft_id=info:pmid/&rft_els_id=S0045782516300718&rfr_iscdi=true |