Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior

The purpose of this work is the development of a two-scale phase-field-based computational model for coupled microstructure evolution and macroscopic mechanical material behavior. To this end, the mechanical behavior of the macroscopic continuum is based on a model for each of its material elements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2016-06, Vol.305, p.89-110
Hauptverfasser: Kochmann, Julian, Wulfinghoff, Stephan, Reese, Stefanie, Mianroodi, Jaber Rezaei, Svendsen, Bob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 89
container_title Computer methods in applied mechanics and engineering
container_volume 305
creator Kochmann, Julian
Wulfinghoff, Stephan
Reese, Stefanie
Mianroodi, Jaber Rezaei
Svendsen, Bob
description The purpose of this work is the development of a two-scale phase-field-based computational model for coupled microstructure evolution and macroscopic mechanical material behavior. To this end, the mechanical behavior of the macroscopic continuum is based on a model for each of its material elements or points as a unit cell (UC) whose average properties determine those of the corresponding material point. The UC model itself is based on materially inhomogeneous elasticity, with material inhomogeneity resulting from microstructure evolution in the UC, driven in particular by stress relaxation. Since the focus of the current work is on computational aspects, microstructure evolution is restricted here for simplicity to bulk structural rearrangement (e.g., austenite–martensite transformation). Consequently, the corresponding phase fields are non-conservative. As well for simplicity, the current formulation is restricted to geometric linearity. The algorithmic formulation and numerical solution of the microscopic initial–boundary-value problem (IBVP) for mechanical equilibrium and relaxational dynamics in the UC is based on Green function and (fast) Fourier transform (FFT) methods. On the other hand, the algorithmic formulation and numerical solution of the macroscopic BVP for quasi-static macroscopic mechanical equilibrium is based on finite element (FE) methods. To demonstrate its capabilities, the current two-scale computational approach is applied in the last part of the work to the modeling and simulation of single- and polycrystalline UCs undergoing structural rearrangement from austenite into multiple martensite variants during loading of the macroscopic continuum.
doi_str_mv 10.1016/j.cma.2016.03.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816080449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782516300718</els_id><sourcerecordid>1816080449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-39622cb5795d41acae1ca56d7bf8d550f663ac55cc540bacbd65e000e83e61c03</originalsourceid><addsrcrecordid>eNp9kLFu2zAQhokiBeq4fYBuGrNQJUVRltEpMOwkgIEs7kxQx1NNlxIVUnKQrUPfoG_YJykVZ84t9wP3_Ye7n5CvnOWc8erbKYdO50WSORM5Y_wDWfB6taYFF_UVWTBWSrqqC_mJXMd4YqlqXizIn8OzpxG0w2y3_ff77253oJnuTTYcdUTaWnSGNkmaDHw3TKMere-1yzpv0Nn-Z-bbrJncr6yzEHwcwwTjFBKAZ--mGX5d1-l5Cn6wkPSIwSakwaM-Wx8-k4-tdhG_vPUl-bHbHjb3dP9497C53VMQgo1UrKuigEau1tKUXINGDlpWZtW0tZGStVUlNEgJIEvWaGhMJTE9irXAigMTS3Jz2TsE_zRhHFVnI6Bzukc_RcVrXrGaleU6ofyCzmfHgK0agu10eFGcqTlxdVIpcTUnrphQKfHk-X7xYPrhbDGoCBZ7QGMDwqiMt--4_wOf6Yye</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816080449</pqid></control><display><type>article</type><title>Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kochmann, Julian ; Wulfinghoff, Stephan ; Reese, Stefanie ; Mianroodi, Jaber Rezaei ; Svendsen, Bob</creator><creatorcontrib>Kochmann, Julian ; Wulfinghoff, Stephan ; Reese, Stefanie ; Mianroodi, Jaber Rezaei ; Svendsen, Bob</creatorcontrib><description>The purpose of this work is the development of a two-scale phase-field-based computational model for coupled microstructure evolution and macroscopic mechanical material behavior. To this end, the mechanical behavior of the macroscopic continuum is based on a model for each of its material elements or points as a unit cell (UC) whose average properties determine those of the corresponding material point. The UC model itself is based on materially inhomogeneous elasticity, with material inhomogeneity resulting from microstructure evolution in the UC, driven in particular by stress relaxation. Since the focus of the current work is on computational aspects, microstructure evolution is restricted here for simplicity to bulk structural rearrangement (e.g., austenite–martensite transformation). Consequently, the corresponding phase fields are non-conservative. As well for simplicity, the current formulation is restricted to geometric linearity. The algorithmic formulation and numerical solution of the microscopic initial–boundary-value problem (IBVP) for mechanical equilibrium and relaxational dynamics in the UC is based on Green function and (fast) Fourier transform (FFT) methods. On the other hand, the algorithmic formulation and numerical solution of the macroscopic BVP for quasi-static macroscopic mechanical equilibrium is based on finite element (FE) methods. To demonstrate its capabilities, the current two-scale computational approach is applied in the last part of the work to the modeling and simulation of single- and polycrystalline UCs undergoing structural rearrangement from austenite into multiple martensite variants during loading of the macroscopic continuum.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2016.03.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Computation ; Computer simulation ; Continuums ; Evolution ; FE–FFT ; Fourier ; Green function ; Mathematical analysis ; Mathematical models ; Microstructure ; Phase field ; Two-scale</subject><ispartof>Computer methods in applied mechanics and engineering, 2016-06, Vol.305, p.89-110</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-39622cb5795d41acae1ca56d7bf8d550f663ac55cc540bacbd65e000e83e61c03</citedby><cites>FETCH-LOGICAL-c330t-39622cb5795d41acae1ca56d7bf8d550f663ac55cc540bacbd65e000e83e61c03</cites><orcidid>0000-0002-2440-5569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2016.03.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kochmann, Julian</creatorcontrib><creatorcontrib>Wulfinghoff, Stephan</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><creatorcontrib>Mianroodi, Jaber Rezaei</creatorcontrib><creatorcontrib>Svendsen, Bob</creatorcontrib><title>Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior</title><title>Computer methods in applied mechanics and engineering</title><description>The purpose of this work is the development of a two-scale phase-field-based computational model for coupled microstructure evolution and macroscopic mechanical material behavior. To this end, the mechanical behavior of the macroscopic continuum is based on a model for each of its material elements or points as a unit cell (UC) whose average properties determine those of the corresponding material point. The UC model itself is based on materially inhomogeneous elasticity, with material inhomogeneity resulting from microstructure evolution in the UC, driven in particular by stress relaxation. Since the focus of the current work is on computational aspects, microstructure evolution is restricted here for simplicity to bulk structural rearrangement (e.g., austenite–martensite transformation). Consequently, the corresponding phase fields are non-conservative. As well for simplicity, the current formulation is restricted to geometric linearity. The algorithmic formulation and numerical solution of the microscopic initial–boundary-value problem (IBVP) for mechanical equilibrium and relaxational dynamics in the UC is based on Green function and (fast) Fourier transform (FFT) methods. On the other hand, the algorithmic formulation and numerical solution of the macroscopic BVP for quasi-static macroscopic mechanical equilibrium is based on finite element (FE) methods. To demonstrate its capabilities, the current two-scale computational approach is applied in the last part of the work to the modeling and simulation of single- and polycrystalline UCs undergoing structural rearrangement from austenite into multiple martensite variants during loading of the macroscopic continuum.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Continuums</subject><subject>Evolution</subject><subject>FE–FFT</subject><subject>Fourier</subject><subject>Green function</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Phase field</subject><subject>Two-scale</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLFu2zAQhokiBeq4fYBuGrNQJUVRltEpMOwkgIEs7kxQx1NNlxIVUnKQrUPfoG_YJykVZ84t9wP3_Ye7n5CvnOWc8erbKYdO50WSORM5Y_wDWfB6taYFF_UVWTBWSrqqC_mJXMd4YqlqXizIn8OzpxG0w2y3_ff77253oJnuTTYcdUTaWnSGNkmaDHw3TKMere-1yzpv0Nn-Z-bbrJncr6yzEHwcwwTjFBKAZ--mGX5d1-l5Cn6wkPSIwSakwaM-Wx8-k4-tdhG_vPUl-bHbHjb3dP9497C53VMQgo1UrKuigEau1tKUXINGDlpWZtW0tZGStVUlNEgJIEvWaGhMJTE9irXAigMTS3Jz2TsE_zRhHFVnI6Bzukc_RcVrXrGaleU6ofyCzmfHgK0agu10eFGcqTlxdVIpcTUnrphQKfHk-X7xYPrhbDGoCBZ7QGMDwqiMt--4_wOf6Yye</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Kochmann, Julian</creator><creator>Wulfinghoff, Stephan</creator><creator>Reese, Stefanie</creator><creator>Mianroodi, Jaber Rezaei</creator><creator>Svendsen, Bob</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2440-5569</orcidid></search><sort><creationdate>20160615</creationdate><title>Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior</title><author>Kochmann, Julian ; Wulfinghoff, Stephan ; Reese, Stefanie ; Mianroodi, Jaber Rezaei ; Svendsen, Bob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-39622cb5795d41acae1ca56d7bf8d550f663ac55cc540bacbd65e000e83e61c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Continuums</topic><topic>Evolution</topic><topic>FE–FFT</topic><topic>Fourier</topic><topic>Green function</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Phase field</topic><topic>Two-scale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kochmann, Julian</creatorcontrib><creatorcontrib>Wulfinghoff, Stephan</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><creatorcontrib>Mianroodi, Jaber Rezaei</creatorcontrib><creatorcontrib>Svendsen, Bob</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kochmann, Julian</au><au>Wulfinghoff, Stephan</au><au>Reese, Stefanie</au><au>Mianroodi, Jaber Rezaei</au><au>Svendsen, Bob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2016-06-15</date><risdate>2016</risdate><volume>305</volume><spage>89</spage><epage>110</epage><pages>89-110</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>The purpose of this work is the development of a two-scale phase-field-based computational model for coupled microstructure evolution and macroscopic mechanical material behavior. To this end, the mechanical behavior of the macroscopic continuum is based on a model for each of its material elements or points as a unit cell (UC) whose average properties determine those of the corresponding material point. The UC model itself is based on materially inhomogeneous elasticity, with material inhomogeneity resulting from microstructure evolution in the UC, driven in particular by stress relaxation. Since the focus of the current work is on computational aspects, microstructure evolution is restricted here for simplicity to bulk structural rearrangement (e.g., austenite–martensite transformation). Consequently, the corresponding phase fields are non-conservative. As well for simplicity, the current formulation is restricted to geometric linearity. The algorithmic formulation and numerical solution of the microscopic initial–boundary-value problem (IBVP) for mechanical equilibrium and relaxational dynamics in the UC is based on Green function and (fast) Fourier transform (FFT) methods. On the other hand, the algorithmic formulation and numerical solution of the macroscopic BVP for quasi-static macroscopic mechanical equilibrium is based on finite element (FE) methods. To demonstrate its capabilities, the current two-scale computational approach is applied in the last part of the work to the modeling and simulation of single- and polycrystalline UCs undergoing structural rearrangement from austenite into multiple martensite variants during loading of the macroscopic continuum.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2016.03.001</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2440-5569</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2016-06, Vol.305, p.89-110
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_1816080449
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Computation
Computer simulation
Continuums
Evolution
FE–FFT
Fourier
Green function
Mathematical analysis
Mathematical models
Microstructure
Phase field
Two-scale
title Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-scale%20FE%E2%80%93FFT-%20and%20phase-field-based%20computational%20modeling%20of%20bulk%20microstructural%20evolution%20and%20macroscopic%20material%20behavior&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Kochmann,%20Julian&rft.date=2016-06-15&rft.volume=305&rft.spage=89&rft.epage=110&rft.pages=89-110&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2016.03.001&rft_dat=%3Cproquest_cross%3E1816080449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816080449&rft_id=info:pmid/&rft_els_id=S0045782516300718&rfr_iscdi=true